Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Antikörper gegen Hirntumore

22.06.2016

Wissenschaftler des Helmholtz Zentrums München und des Klinikums der Ludwig-Maximilians-Universität München (LMU) entwickeln einen neuen Antikörper zur Behandlung von Hirntumoren. Mit einer jetzt bewilligten Förderung von 3,5 Millionen Euro durch das Bundesministerium für Bildung und Forschung (BMBF) und den Helmholtz-Validierungsfonds soll die neue Substanz nun die ersten Schritte in die klinische Testung machen.

Beim Glioblastom handelt es sich um eine sehr aggressive Form von Hirntumoren. In der Regel wird das Krebsgewebe möglichst vollständig operativ entfernt und der Patient bestrahlt bzw. chemotherapeutisch behandelt.


Prof. Dr. Reinhard Zeidler, Quelle: Helmholtz Zentrum München / Sanni Fackler

Dennoch beträgt die durchschnittliche Überlebensdauer nach der Diagnose aufgrund von im Gehirn verbliebenen Krebszellen nur Monate. Ein Wissenschaftlerteam um Prof. Dr. Reinhard Zeidler, Forschungsgruppenleiter in der Abteilung Genvektoren am Helmholtz Zentrum München und der Klinik und Poliklinik für Hals-, Nasen und Ohrenheilkunde am Klinikum der Universität München, will mit einem neuen Antikörper die Therapie verbessern.

Tödliche Lieferung für Tumorzellen

Das Molekül trägt den Namen 6A10 und bindet spezifisch an das Enzym Carboanhydrase XII, das nur auf Krebszellen nicht aber auf gesunden Gehirnzellen vorkommt. Damit hat es zwei Effekte: zum einen hemmt es direkt das Enzym, welches für schnell wachsende Tumorzellen von großer Bedeutung ist.

Zum anderen hat der Antikörper ein für die Tumorzellen tödliches Gepäck im Schlepptau: Lutetium-177. Das Schwermetall ist ein sogenannter Betastrahler und schädigt die Zellen in seiner unmittelbaren Umgebung. Durch den Antikörper gelangt es direkt zu den verbliebenen Tumorzellen.

Wirkung an Ort und Stelle

Um den Antikörper möglichst konzentriert und nah an seinen Wirkungsort heranzubringen, wird er direkt an der Stelle des entfernten Tumorgewebes eingesetzt. Die Wissenschaftler um Prof. Zeidler, darunter Prof. Hans-Jürgen Reulen, ehemaliger Ordinarius für Neurochirurgie am Klinikum der LMU, und Dr. Franz Gildehaus von der Nuklearmedizin am gleichnamigen Universitätsklinikum, hoffen so, das Wiederauftreten der Erkrankung zu verzögern oder gar zu verhindern.

„Gemeinsam haben wir ein kompetentes Netzwerk an Molekularbiologen, Neurochirurgen, Nuklearmedizinern, Strahlenphysikern und Radiopharmazeuten aufgebaut“, beschreibt Projektleiter Zeidler. Auch die Neurochirurgische Klinik und Poliklinik (Direktor: Prof. Dr. Tonn) und die Klinik und Poliklinik für Nuklearmedizin (Direktor: Prof. Dr. Bartenstein) am Campus Großhadern werden bei den geplanten klinischen Studien eine wichtige Rolle spielen.

In der ersten Phase wollen Zeidler und seine Kollegen den Grundstein für die klinische Testung legen: „Das umfasst zunächst eine entsprechend sachgemäße Herstellung des Antikörpers, wie sie vom Arzneimittelgesetz für die Verwendung am Menschen zwingend vorgeschrieben ist.“ Danach sollen dann erste Tests an Patienten stattfinden. Wie in dieser Phase üblich, rechnen die Wissenschaftler für die erste Studie mit 12-15 Teilnehmern, die den Wirkstoff erhalten.

„Die Hoffnung ist, dass wir langfristig eine neue Therapieoption für Glioblastom-Patienten bereitstellen können“, so Zeidler mit Blick auf die Zukunft. Neben den erhofften Erfolgen bei Gehirntumoren haben er und seine Kollegen auch weitere Tumorarten im Visier. Da das Zielmolekül Carboanhydrase XII auch auf anderen Krebszellen vermehrt vorkommt, sei ein Einsatz bei weiteren Erkrankungsformen wie etwa Lungenkrebs denkbar.

„Wir hoffen, unser Vorhaben wird ein Beispiel dafür, dass sich mit einer geeigneten Förderung auch im akademischen Umfeld ein Ergebnis aus dem Labor zu einem klinisch getesteten Produkt entwickeln lässt“, so Projektleiter Zeidler.

Weitere Informationen

Hintergrund:
Die Förderung durch das BMBF erfolgt im Rahmen der VIP+ Fördermaßnahmen zur „Validierung des technologischen und gesellschaftlichen Innovationspotenzials wissenschaftlicher Forschung“. Dabei handelt es sich um eine Hilfestellung für Wissenschaftlerinnen und Wissenschaftler aller Disziplinen, aus der Welt der Forschung heraus den ersten Schritt in Richtung wirtschaftlicher Wertschöpfung oder gesellschaftlicher Anwendung zu gehen.

Der Helmholtz-Validierungsfonds (HVF) ist ein Förderwerkzeug der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V. und wird aus Mitteln des Impuls- und Vernetzungsfonds des Präsidenten gespeist. Durch ihn sollen zwei Lücken geschlossen werden: Zwischen wissenschaftlichen Erkenntnissen und deren marktfähigen Anwendungen einerseits, zwischen öffentlicher Forschung und privaten Investitionen andererseits. Mit dem Validierungsfonds möchte die Helmholtz-Gemeinschaft die Finanzierungslücke verringern und eine Brücke zwischen Idee und Anwendung schlagen.

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Die Abteilung Genvektoren erforscht das Epstein-Barr Virus (EBV), ein Tumorvirus des Menschen, und dessen Beitrag zu verschiedenen Erkrankungen. Ziel ist es herauszufinden, wie das Immunsystem im gesunden Individuum EBV und andere menschliche Herpesviren in Schach hält, und welche Immunkontrollen im Patienten versagen. Die Erforschung von Tumoren des Immunsystems - Leukämien und Lymphome – und die Entwicklung neuer Antikörper für Therapie und Diagnostik sind weitere Schwerpunkte. Mittelfristig sollen neue Medikamente, Impfstoffe gegen EBV und neue Zelltherapien entwickelt werden, um Infektionserkrankungen, Leukämien und Lymphome zu behandeln oder zu verhindern. http://www.helmholtz-muenchen.de/en/agv

Im Klinikum der Universität München (LMU) werden jährlich an den Standorten Campus Großhadern und Campus Innenstadt rund 500.000 Patienten ambulant, teilstationär und stationär behandelt. Den 28 Fachkliniken, zwölf Instituten und sieben Abteilungen sowie den 47 interdisziplinären Zentren stehen etwas mehr als 2.000 Betten zur Verfügung. Von insgesamt 9.500 Beschäftigten sind rund 1.600 Mediziner und 3.200 Pflegekräfte. Das Klinikum der Universität München ist seit 2006 Anstalt des öffentlichen Rechts.

Gemeinsam mit der Medizinischen Fakultät der Ludwig-Maximilians-Universität ist das Klinikum der Universität München an vier Sonderforschungsbereichen der DFG (SFB 684, 914, 1054, 1123), an drei Transregios (TRR 127, 128, 152), der klinischen Forschergruppe 809 sowie an zwei Graduiertenkollegs der DFG (GK 1091, 1202) beteiligt. Hinzu kommen die Exzellenzeinrichtungen „Center for Integrated Protein Sciences“ (CIPSM), „Munich Center of Advanced Photonics“ (MAP), „Nanosystems Initiative Munich“ (NIM) und „Munich Cluster for Systems Neurology“ (SyNergy) sowie die Graduiertenschulen „Graduate School of Systemic Neurosciences“ (GSN-LMU), die „Graduate School of Quantitative Biosciences Munich (QBM)“ und „The Graduate School Life Science Munich (LSM)”. http://www.klinikum.uni-muenchen.de

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Prof. Dr. Reinhard Zeidler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Genvektoren, Forschungsgruppe Prävention und Immunmodulation, Marchioninistraße 25, 81377 München - Tel. +49 89 3187 1401, E-Mail: zeidler@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/article/35075/index.html

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

nachricht Forscher entwickeln Unterwasser-Observatorium
07.12.2016 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln Unterwasser-Observatorium

07.12.2016 | Biowissenschaften Chemie

HIV: Spur führt ins Recycling-System der Zelle

07.12.2016 | Biowissenschaften Chemie

Mehrkernprozessoren für Mobilität und Industrie 4.0

07.12.2016 | Informationstechnologie