Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ansatzpunkt für Krebsmedikament entdeckt: TUM-Forscher zeigen Wippbewegung bei Antistress-Protein Hsp90

24.08.2010
Wenn Zellen in Stress geraten, leistet das Eiweiß Hsp90 einen wichtigen Beitrag dazu, dass sie überleben. Forscher der Technischen Universität München (TUM) haben die Arbeitsweise dieses Proteins vor einiger Zeit aufgeklärt - doch nun hat Hsp90 mit einem unerwarteten Bewegungsmuster selbst die Experten überrascht. Ihre Ergebnisse werden in der aktuellen Online-Ausgabe des renommierten Wissenschaftsmagazins PNAS publiziert und könnten helfen, ein spezifisches Medikament gegen Krebs zu finden.

Proteine sind die Maschinen der Zelle: Sie transportieren zum Beispiel Nährstoffe, bewegen unsere Muskeln, wandeln Stoffe chemisch um oder falten andere Proteine. Das so genannte Hitzeschockprotein Hsp90 ist für unsere Zellen von zentraler Bedeutung, da es viele Basis-Prozesse entscheidend steuert - bei uns genauso wie in Bakterien oder Hefen.

Es ist etwa maßgeblich daran beteiligt, dass einfache Aminosäureketten zu funktionierenden Proteinen mit einer genau definierten räumlichen Struktur gefaltet werden. Vor allem dann, wenn die Zelle durch Hitze, Vergiftungen oder Sauerstoffmangel hohem Stress ausgesetzt ist, wird HSP 90 vermehrt hergestellt, um die Schäden in Grenzen zu halten.

Das Antistress-Protein ist ein Dimer (besteht also aus zwei identischen Teilen) und kann grob in drei Abschnitte eingeteilt werden: oben der N-Terminus, dann die Mitteldomäne und unten der C-Terminus. Die notwendige Energie für seine Funktion gewinnt Hsp90 durch die langsame Spaltung von ATP, dem Treibstoff jeder Zelle. Dabei bewegen sich die beiden Stränge gegeneinander, allerdings nur um einige Nanometer. TUM-Wissenschaftler um Prof. Johannes Buchner aus der Chemie und Prof. Thorsten Hugel aus der Physik kennen die Hsp90-Bewegung eigentlich gut: Sie waren die ersten, die das scherenartige Verhalten in Echtzeit verfolgt haben. Doch nun waren auch sie überrascht: Denn anstatt der bekannten, einseitigen Scherenbewegung am N-Terminus konnten sie nun eine doppelseitige Wippbewegung nachweisen.

Auch am C-Terminus bewegt sich das Hsp90 scherenartig auf und zu – so etwas war bisher bei Dimeren nicht bekannt. Für ihre neue Beobachtung haben die Forscher auf die sog. FRET-Technik (FRET = Förster Resonance Energy Transfer) zurückgegriffen. Sie haben zwei fluoreszierende Farbstoffmoleküle an exakt definierten Stellen im Hsp90 angebracht und als molekulares Lineal benutzt: Beleuchtet man einen Farbstoff, so bringt dieser den zweiten Farbstoff umso heller zum Leuchten, je näher er an diesem ist. So konnten sie unter einem eigens dafür gebauten Spezialmikroskop die doppelte Scherenbewegung im Nanometerbereich an einzelnen Hsp90-Dimeren sehen.

Besonders interessant ist, dass die doppelte Scherenbewegung am N- und C-Terminus eng gekoppelt ist: Das Hsp90-Dimer öffnet sich wechselseitig auf der einen oder anderen Seite, wie eine Wippe. „Dies erklärt die hohe Stabilität des Dimers - sonst würde so ein Antistress-Protein viel schneller auseinanderfallen“ erklärt Thorsten Hugel. Sehr überrascht hat sein Team auch die Regulation der Geschwindigkeit dieser Wippbewegung: Denn verantwortlich für die Regulation der Schere am C-Terminus ist die ATP-Bindung, die am N-Terminus stattfindet. Das konnten die Forscher nachweisen, indem sie dem Dimer die Energiezufuhr ATP abdrehten. Die Schlussfolgerung des Teams: Hsp90 kommuniziert intern über ungewöhnlich weite Strecken – fast zehn Nanometer.

Das beobachtete Bewegungs- und Kommunikationsmuster ist für die Grundlagenforschung interessant, aber gleichzeitig auch für die Pharmaindustrie: Denn Hsp90 gilt als vielversprechender Ansatzpunkt für die Krebstherapie. Bisher aussichtsreiche Medikamente blockieren am N-Terminus des Antistress-Proteins die Aufnahme von ATP. Dabei wird jedoch gleichzeitig auch bei anderen Proteinen die Energiezufuhr behindert – ungewollte Nebenwirkungen sind die Folge. Dank ihrer neuen Erkenntnisse können sich die TUM-Forscher nun auf den C-Terminus von Hsp90 konzentrieren: „Dort gibt es einzigartige Andockstellen für Krebsmedikamente, die eine Wirkung ohne Nebeneffekte haben sollten“, hofft Hugel.

Die Arbeit wurden durch die Deutsche Forschungsgemeinschaft, den Fonds der Chemischen Industrie und die beiden Exzellenzcluster Nanoinitiative München (NIM) und Munich Center for Integrated Protein Science (CIPSM) unterstützt.

Kostenloses Bildmaterial:
http://mediatum2.ub.tum.de/node?id=993263
Film zur neu entdeckten Wippbewegung von Hsp90:
http://bio.ph.tum.de/index.php?id=210
Originalpublikation:
C. Ratzke, M. Mickler, B. Hellenkamp, J. Buchner and T. Hugel: „Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle”. PNAS, Online Early Edition in the week of August 23, 2010.

Kontakte:

Prof. Dr. Johannes Buchner
Technische Universität München
Department Chemie
Lichtenbergstr. 4
85747 Garching
Tel.: 089 / 289 13341
E-Mail: johannes.buchner@ch.tum.de
Prof. Dr. Thorsten Hugel
Technische Universität München
Department Physik
James Franck Str. 1
85748 Garching
Tel.: 089 / 289-16781
E-Mail: thorsten.hugel@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise