Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ansatzpunkt für Regenerative Diabetes-Therapien

12.07.2016

Betazellen in der Bauchspeicheldrüse gibt es in verschiedenen Varianten. Wissenschaftler des Helmholtz Zentrums München haben nun einen Marker gefunden, der zwei Zellgruppen unterscheiden kann: Während die einen Insulin produzieren, um den Blutzucker im Gleichgewicht zu halten, bilden die anderen einen teilungsstarken Reservepool. Dies berichten die Forscher gemeinsam mit Kollegen der Technischen Universität München und des Deutschen Zentrums für Diabetesforschung (DZD) in der Zeitschrift ‚Nature‘. Hier geht es zu einem Videointerview mit dem Studienleiter: https://vimeo.com/172573163

Die Betazellen der Bauchspeicheldrüse produzieren bei steigendem Blutzuckerspiegel das Stoffwechselhormon Insulin, um den Zuckerhaushalt im Gleichgewicht zu halten. Werden sie zerstört oder verlieren ihre Funktion, kann das zu schwerwiegenden Erkrankungen wie Diabetes führen.


Während Betazellen, die das Molekül Flattop aufweisen (grün) sich um die Insulinproduktion kümmern, bilden Zellen ohne Flattop (rot) einen teilungsfähigen Reservepool.

Quelle: Helmholtz Zentrum München

Doch nicht alle dieser Zellen sind identisch. „Es ist schon länger bekannt, dass es verschiedene Untergruppen der Betazellen gibt“, erklärt Prof. Heiko Lickert, Direktor des Instituts für Diabetes- und Regenerationsforschung am Helmholtz Zentrum München. „Die molekularen Grundlagen waren bisher aber weitgehend unverstanden.“

Flattop markiert reife Betazellen

In der aktuellen Studie suchten die Wissenschaftler um Lickert nach molekularen Unterscheidungsmöglichkeiten für diese Untergruppen, sogenannte Marker. Dabei geriet ein Molekül besonders in ihren Fokus: das Protein Flattop.* Es lag in etwa 80 Prozent aller Betazellen vor, wie die Wissenschaftler zeigten. Diese Zellen ermittelten den Zuckergehalt ihrer Umgebung und gaben entsprechend viel Insulin ab – verhielten sich also wie reife Betazellen.

Zellen ohne Flattop teilen sich öfter

Umgekehrt beobachtete das Forscherteam, dass Betazellen, in denen kein Flattop messbar war, eine besonders hohe Teilungsrate aufwiesen. „In unserem Versuchsmodell vermehrten sich diese Zellen bis zu vier Mal öfter als die Flattop-positiven“, so Studienleiter Lickert.

Eine Art Vorläuferzellen

Um der Vermutung nachzugehen, dass es sich bei den teilungsaktiven Zellen ohne Flattop um Vorläufer der stoffwechselaktiven Zellen handelt, verwendeten die Wissenschaftler einen genetischen Trick um das Schicksal einzelner Zellen zu verfolgen. Dieses sogenannte lineage tracing** zeigte, dass die teilungsaktiven Reservezellen zu stoffwechselaktiven Zellen heranreifen können. Das war auch der Fall, wenn man sie in eine künstliche dreidimensionale Umgebung einsetzt, vergleichbar mit einem Mini-Organ. Zudem bestätigten genetische Analysen, dass in den Flattop-negativen Zellen vor allem Gene für die Wahrnehmung der Umwelt aktiv waren, während in Zellen mit Flattop vor allem Stoffwechselprogramme abliefen.

„Unsere Ergebnisse lassen darauf schließen, dass es sich bei den Flattop-negativen Zellen um eine Art Reservepool handelt, der sich stetig erneuert und Nachschub für reife Betazellen ausbilden kann“, so Lickert. Durch die nun mögliche Unterscheidung der Zellgruppen, sei nun auch eine saubere Analyse der jeweiligen Signalwege möglich, so der Studienleiter weiter. Gerade mit Blick auf regenerative Therapien, machen die Ergebnisse den Forschern große Hoffnungen: „Die Verschiedenartigkeit der Betazellen wird schon mehr als 50 Jahre lang erforscht, nun scheint es, als ob wir anfangen zu begreifen, wie sich die Zellen verhalten“, so Heiko Lickert.

Perspektivisch ergeben sich laut den Forschern nun vor allem zwei Aspekte: Zum einen erhoffen sie sich für eine Regenerationstherapie, künftig in Patienten mit einem Mangel an funktionellen Betazellen deren Wachstum oder Reifung ankurbeln zu können. Zum anderen könne man versuchen über die von Flattop ‚getriggerten‘ Signalwege die Reifung von Betazellen in der Petrischale zu fördern, was für die Zellersatztherapie bedeutend, bisher aber noch nicht vollends möglich sei.

Weitere Informationen

Hintergrund:
* Flattop ist Bestandteil des sogenannten Wnt Signalweges, der vor allem die Entwicklung von Geweben und die Funktionen von Zellen steuert.

**Lineage tracing ist ein Verfahren zur Verfolgung von Einzelzellschicksalen. Grundalge ist das Einbringen von Genvarianten, die beim Einschalten des jeweiligen Gens ein farbiges Farbsignal von sich geben. In diesem konkreten Fall leuchten Zellen ohne Flattop zunächst rot, sobald Flattop abgelesen wird hingegen grün.

Original-Publikation:
Bader, E. et al. (2016). Identification of proliferative and mature β-cells in the islet of Langerhans, Nature, DOI: 10.1038/nature18624
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18624.html

Korrespondierende Reviews der Arbeitsgruppe:
Migliorini, A. et al. (2016). Impact of islet architecture on beta cell heterogeneity, plasticity and function, Diabetologia, doi: 10.1007/s00125-016-3949-9

Roscioni, S. et al. (2016). Impact of islet architecture on beta cell heterogeneity, plasticity and function, Nature Reviews Endocrinology, in press

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Die Arbeiten des Instituts für Diabetes- und Regenerationsforschung (IDR) konzentrieren sich auf die biologische und physiologische Erforschung der Bauchspeicheldrüse bzw. der Insulin-produzierenden Betazellen. So trägt das IDR zur Aufklärung der Entstehung von Diabetes und der Entdeckung neuer Risikogene der Erkrankung bei. Experten aus den Bereichen Stammzellforschung und Stoffwechselerkrankungen arbeiten gemeinsam an Lösungen für regenerative Therapieansätze des Diabetes. Das IDR ist Teil des Helmholtz Diabetes Center (HDC). http://www.helmholtz-muenchen.de/idr

Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 39.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. http://www.tum.de

Das Deutsche Zentrum für Diabetesforschung e.V. (DZD) ist eines der sechs Deutschen Zentren der Gesundheitsforschung. Es bündelt Experten auf dem Gebiet der Diabetesforschung und verzahnt Grundlagenforschung, Epidemiologie und klinische Anwendung. Ziel des DZD ist es, über einen neuartigen, integrativen Forschungsansatz einen wesentlichen Beitrag zur erfolgreichen, maßgeschneiderten Prävention, Diagnose und Therapie des Diabetes mellitus zu leisten. Mitglieder des Verbunds sind das Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, das Deutsche Diabetes-Zentrum DDZ in Düsseldorf, das Deutsche Institut für Ernährungsforschung DIfE in Potsdam-Rehbrücke, das Institut für Diabetesforschung und Metabolische Erkrankungen des Helmholtz Zentrum München an der Eberhard-Karls-Universität Tübingen und das Paul-Langerhans-Institut Dresden des Helmholtz Zentrum München am Universitätsklinikum Carl Gustav Carus der TU Dresden, assoziierte Partner an den Universitäten in Heidelberg, Köln, Leipzig, Lübeck und München sowie weitere Projektpartner. http://www.dzd-ev.de

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner:
Prof. Dr. Heiko Lickert, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Diabetes- und Regenerationsforschung, Parkring 11, 85748 Garching - Tel. +49 89 3187 3867, E-Mail: heiko.lickert@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie