Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ansatz zur Produktion von molekularem Wasserstoff

18.05.2017

Eine aktuelle Forschungsarbeit des Lehrstuhls für Molekulare Funktionsmaterialien (Prof. Xinliang Feng), Center for Advancing Electronics Dresden an der TU Dresden, die in Zusammenarbeit mit Forschern an Universitäten und Instituten in Deutschland, Frankreich und Japan entstand, wurde am 17. Mai 2017 in Nature Communications veröffentlicht. Das Papier mit dem Titel "Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics" beschreibt einen neuen Ansatz zur Produktion von molekularem Wasserstoff, welches diesen Prozess revolutionieren könnte. Das Gas gilt als einer der vielversprechendsten Energieträger der Zukunft.

Ein wachsendes Bewusstsein hinsichtlich der Probleme traditioneller Energieträger verlangt nach der gezielten Entwicklung von erneuerbaren Energiequellen, als Alternative für die begrenzten fossilen Brennstoffe. Wegen seiner hohen Energiedichte und umweltfreundlichen Eigenschaften ist molekularer Wasserstoff ein attraktiver und vielversprechender Energiespeicher für die künftige globale Energienachfrage.


a) Syntheseschema von MoNi4-Elektrokatalysatoren geträgert auf MoO2-Kuboiden auf einem Nickelschaum; b) Polarisierungskurven des MoNi4-Elektrokatolysators auf MoO3-Kuboiden, der reinen Nickelnanoschichten und von MoO2-Kuboiden auf Nickelschaum; c) Berechnete Adsorptions-Freie-Energie-Diagramm für den Tafel-Schritt.

Prof. Xinliang Feng/cfaed

Unter den verschiedenen Methoden zur Herstellung von Wasserstoff stellt die elektrokatalytische Erzeugung durch Wasserspaltung (Wasserstoffentwicklungsreaktion, engl.: HER) das effektivste Verfahren für die zukünftige Wasserstoffökonomie dar.

Um die Geschwindigkeit der üblicherweise langsam ablaufenden HER – besonders in basischen Elektrolyten – anzuheben, werden hoch aktive und robuste Elektrokatalysatoren benötigt, um die kinetische HER-Überspannung zu senken. Als Messlatte der HER-Elektrokatalysatoren mit einer Überspannung von Null gilt das Edelmetall Platin, welches die dominante Rolle in der H2-Produktionstechnologie spielt, wie zum Beispiel in der Wasser-Alkali-Elektrolyse. Knappheit und hohe Beschaffungskosten hindern jedoch die großtechnische Anwendung in der elektrokatalytischen HER.

Professor Xinliang Feng (Lehrstuhl für Molekulare Funktionsmaterialien) und sein Team vom Center for Advancing Electronics Dresden an der TU Dresden haben in Zusammenarbeit mit dem Fraunhofer-Institut für Keramische Technologien und Systeme (IKTS) Dresden und internationalen Partnern von der Universität Lyon (ENS de Lyon), Centre national de la recherche scientifique (CNRS, beide Frankreich) und der Tohoku University (Japan) nun einen günstigen Elektrokatalysator hergestellt, welcher auf Molybdän-Nickel (MoNi4) basiert, das wiederum auf Molybdän-Oxid-Kuboiden (MoO2) verankert ist. Diese Kleinststrukturen werden vertikal auf einem Nickelschaum ausgerichtet (MoNi4/MoO2@Ni).

Die MoNi4-Nanopartikel werden in situ auf den MoO2-Kuboiden gezüchtet, indem Nickelatome nach außen diffundieren. Das entstehende Material MoNi4/MoO2@Ni hat eine sehr hohe HER-Aktivität, die vergleichbar mit denen der Platinkatalysatoren ist, und setzt damit eine neue Kennmarke unter den platinfreien Elektrokatalysatoren. Experimentell konnten die MoNi4-Kerne als katalytisch hochaktive Zentren ausgemacht werden.

Darüber hinaus wurde mit theoretischen Berechnungen auf Basis der Dichtefunktionaltheorie (DFT) aufgezeigt, dass die Energiebarriere der Volmer-Stufe für die MoNi4-Elektrokatalysatoren stark gesenkt ist. Die Möglichkeit, diesen Elektrokatalysator in einem großen Maßstab herzustellen, sowie die exzellente katalytische Stabilität zeigen MoNi4/MoO2@Ni als eine vielversprechende Alternative in der Wasser-Alkali-Elektrolyse für die Wasserstoffproduktion auf. Die weitere Erforschung von MoNi4-Elektrokatalysatoren weist daher den Weg zu einer hoffnungsvollen Methode für eine zukünftige Anwendung in der Energieerzeugung.

Referenz:
Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, X. Feng*
Nat Commun.

Diese Arbeit wurde finanziell unterstützt durch den Fond 2DMATER des Europäischen Forschungsrates (ERC) und die EU innerhalb des „Graphene Flagship“-Programms (No. CNECT-ICT-604391).
DOI: 10.1038/NCOMMS15437

Bildunterschrift Pressebild:
Abbildung. a) Syntheseschema von MoNi4-Elektrokatalysatoren geträgert auf MoO2-Kuboiden auf einem Nickelschaum; b) Polarisierungskurven des MoNi4-Elektrokatolysators auf MoO3-Kuboiden, der reinen Nickelnanoschichten und von MoO2-Kuboiden auf Nickelschaum; c) Berechnete Adsorptions-Freie-Energie-Diagramm für den Tafel-Schritt.

Download unter: http://bit.ly/2qnEolD

Informationen für Journalisten:
Prof. Xinliang Feng
Technische Universität Dresden
Tel.: +49 351 463-43251
Mail: xinliang.feng@tu-dresden.de

Matthias Hahndorf
cfaed Referent für Wissenschaftskommunikation
Tel.: +49 (0) 351 463-42847
E-mail: matthias.hahndorf@tu-dresden.de

cfaed
Zum Exzellenzcluster für Mikroelektronik der Technischen Universität Dresden gehören elf Forschungsinstitute, darunter die Technische Universität Chemnitz sowie zwei Max-Planck-Institute, zwei Fraunhofer-Institute, zwei Leibniz-Institute und das Helmholtz-Zentrum Dresden-Rossendorf. Auf neun verschiedenen Pfaden forschen rund 300 Wissenschaftler nach neuartigen Technologien für die elektronische Informationsverarbeitung. Sie verwenden dabei innovative Materialien wie Silizium-Nanodrähte, Kohlenstoff-Nanoröhren oder Polymere. Außerdem entwickeln sie völlig neue Konzepte, wie den chemischen Chip oder Herstellungsverfahren durch selbstassemblierende Strukturen, bspw. DNA-Origami. Ziele sind zudem Energieeffizienz, Zuverlässigkeit und das reibungslose Zusammenspiel der unterschiedlichen Bauelemente. Darüber hinaus werden biologische Kommunikationssysteme betrachtet, um Inspirationen aus der Natur für die Technik zu nutzen. Dieser weltweit einzigartige Ansatz vereint somit die erkenntnisgetriebenen Naturwissenschaften und die innovationsorientierten Ingenieurwissenschaften zu einer interdisziplinären Forschungsplattform in Sachsen.

www.cfaed.tu-dresden.de 

Weitere Informationen:

http://dx.doi.org/10.1038/NCOMMS15437

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics