Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Wirkstoffklasse zur reversiblen Blockierung des Proteasoms

22.11.2011
Als „Recyclinghof“ der Zelle steuert das Proteasom lebenswichtige Funktionen.

Wird es blockiert, erstickt die Zelle am eigenen Müll. Vor allem Krebszellen reagieren empfindlich, denn sie benötigen das Proteasom für ihr unkontrolliertes Wachstum. Nun charakterisierten Biochemiker der Technischen Universität München (TUM) die Grundstruktur einer neuen Wirkstoffklasse, die das Proteasom in besonderer Weise angreift. Auf der Grundlage dieses bislang unbekannten Bindungsmechanismus könnten neue Medikamente entwickelt werden. Über ihre Ergebnisse berichten die Forscher in der Fachzeitschrift „Angewandte Chemie“.


Ein Hydroxyharnstoff-Derivat blockiert das Proteasom. Foto: TUM

Das Proteasom, ein großer Eiweißkomplex, erfüllt in den Zellen des Körpers eine lebenswichtige Aufgabe: Ähnlich einer Recyclinganlage zerlegt es nicht mehr benötigte Proteine in kurze Stücke und sorgt für deren Wiederverwertung. Auf diese Weise steuert es vielfältige Funktionen der Zelle: Es reguliert Wachstum und Teilung, baut defekte Proteine ab und sorgt als wesentlicher Partner des Immunsystems zudem für Abwehr und Entzündungsreaktionen. Da es an so vielen wichtigen Mechanismen der Zelle beteiligt ist, wird das Proteasom auch mit vielen Krankheiten wie etwa Krebs, Mukoviszidose und einer Reihe neurodegenerativer Erkrankungen wie Parkinson oder Alzheimer in Verbindung gebracht.

Wegen seiner bedeutenden Rolle für das Wachstum von Krebszellen ist das Proteasom in den letzten Jahren vor allem als Ansatzpunkt für Krebsmedikamente in den Fokus der pharmakologischen Forschung gerückt. Blockiert man es, kann man das Wachstum von Krebszellen bremsen. Das erste Medikament, das diese Strategie anwendet, Bortezomib, erzielt inzwischen einen Umsatz von mehr als einer Milliarde US-Dollar pro Jahr. Es wird gegen das Multiple Myelom, eine Krebserkrankung des Knochenmarks, eingesetzt. Doch allem Erfolg zum Trotz, haben derzeit eingesetzte Proteasomhemmer oft schwerwiegende Nachteile. Aufgrund ihrer hohen Reaktivität greifen sie auch andere Proteine an und schädigen so nicht nur Krebs- sondern auch gesunde Zellen.

Auf der Suche nach Alternativen wurden Wissenschaftler um Professor Michael Groll, Inhaber des Lehrstuhls für Biochemie am Department Chemie der TU München, in Zusammenarbeit mit Professor Robert Huber, emeritierter Direktor am Max-Planck Institut für Biochemie und Dr. Stefan Hillebrand von der Firma Bayer CropScience nun fündig. In einem Hochdurchsatz-Screening durchsuchten die Wissenschaftler eine Substanzbibliothek der Firma, die 200.000 potentielle Wirkstoffe enthielt, auf Proteasom-hemmende Substanzen – mit Erfolg: Sie identifizierten eine neue Struktur mit dem sogenannten N-Hydroxyharnstoff-Motiv, das nicht nur reversibel sondern vor allem auch spezifisch mit dem aktiven inneren Kern des Proteasoms reagiert. Die Struktur hemmt dabei ganz gezielt die Funktion bestimmter, katalytisch aktiver Untereinheiten des Proteinkomplexes und legt das Enzym so gezielt lahm. Aufgrund dieser Eigenschaft wirkt die neu entdeckte Hydroxyharnstoff-Struktur spezifischer als andere Proteasomhemmer und lässt daher weniger schwere Nebenwirkungen erwarten.

Die Hydroxyharnstoff-Grundstruktur war den Forschern bereits bekannt – jedoch in vollkommen anderem Zusammenhang. Es handelt sich um ein Derivat des Wirkstoffes Zileuton, der gegen Asthma eingesetzt wird. Zileuton selbst beeinflusst das Proteasom nicht, sein Verwandter, der bislang wenig beachtet wurde, jedoch schon. „Wir haben hier bei einer bereits bekannten Substanzklasse eine ganz neue Anwendung festgestellt“, erklärt Groll. „Dies ist ein großer Vorteil, denn so gibt es bereits klinische Studien, die uns erste Hinweise darauf geben, wie sich die Wirkstoffklasse im Körper verhält“.

Die in der Datenbank ursprünglich entdeckte Ausgangsstruktur hemmte das Proteasom zunächst zwar sehr spezifisch, jedoch nicht besonders gut. Um die Struktur nun so zu modifizieren, dass sie auch in geringen Konzentrationen wirkt, wie sie für den Einsatz als Medikament erforderlich sind, war es im nächsten Schritt notwendig zu verstehen, wie genau die Struktur am Proteasom angreift. Um dies heraus zu finden führten die Forscher eine Kristallstrukturanalyse durch. Dabei zeigte sich, dass das Hydroxyharnstoff-Motiv das Proteasom auf vollkommen andere Art und Weise angreift als bisherige Hemmstoffe. Es interagiert mit bislang unentdeckten Bindetaschen, die als neue Ansatzstellen für die Wirkstoffentwicklung dienen könnten.

Ausgehend von Modellierungsstudien synthetisierten die Forscher eine Reihe verschiedener Abwandlungen des Wirkstoffes, um die Wirksamkeit der Struktur zu verbessern. Anschließende röntgenkristallografische Untersuchungen und Aktivitätstests zeigten, dass von den beiden an die Grundstruktur angehängten Resten abhängt, wie gut der Wirkstoff die Aktivität des Proteasoms hemmt.

Da das Proteasom in allen Zellen enthalten und in vielen verschiedenen zellulären Funktionen involviert ist, bietet die neue hemmende Struktur verschiedene therapeutische Einsatzmöglichkeiten, nicht nur bei der Krebstherapie. Auch im Zusammenhang mit Autoimmunkrankheiten kann eine Hemmung des Immunoproteasoms, einem Verwandten des Proteasoms, von Bedeutung sein. Bei Autoimmunerkrankungen wie etwa manchen Formen von Rheuma, greift das Immunsystem körpereigenes Gewebe an. Hemmt man das Immunoproteasom könnten solche Überreaktionen abgeschwächt werden. In zukünftigen Untersuchungen wollen die Wissenschaftler um Professor Groll mit Hilfe von Experimenten in Zellkulturen die Wirksamkeit der Hydroxyharnstoff-Struktur weiter verbessern.

Originalpublikation:

New class of non-covalent proteasome inhibitors: the hydroxyureas, Nerea Gallastegui, Phillip Beck, Marcelino Arciniega, Robert Huber, Stefan Hillebrand and Michael Groll, Angewandte Chemie, DOI: 10.1002/ange.201106010 Link: http://dx.doi.org/10.1002/ange.201106010

Kontakt:

Prof. Dr. Michael Groll
Technische Universität München
Lehrstuhl für Biochemie
Lichtenbergstr. 4
85748 Garching
Tel: +49 89 / 289-13361
E-Mail: michael.groll@ch.tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.biochemie.ch.tum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Filter für schweren Wasserstoff
28.02.2017 | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

nachricht Wie Medikamente als Virus getarnt gegen Krebs wirken können
28.02.2017 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Künstlicher Intelligenz das Gehirn verstehen

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas über den Schaltplan des Gehirns bekannt.

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas...

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nebennierentumoren: Radioaktiv markierte Substanzen vermeiden unnötige Operationen

28.02.2017 | Veranstaltungen

350 Onlineforscher_innen treffen sich zur Fachkonferenz General Online Research an der HTW Berlin

28.02.2017 | Veranstaltungen

23. VDMA-Arbeitsberatung „Engineering und Konstruktion“ am 2. März 2017 an der TH Wildau

28.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Partnerprogramm von Stellar Datenrettung

28.02.2017 | Unternehmensmeldung

Ein Filter für schweren Wasserstoff

28.02.2017 | Biowissenschaften Chemie

Auf den Spuren der Entstehung von Kondensationstropfen

28.02.2017 | Physik Astronomie