Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Wespenart benutzt tote Ameisen, um ihr Nest zu schützen

03.07.2014

Freiburger Ökologen entdecken eine neue Wespenart, die ihren Nachwuchs mit toten Ameisen schützt

In den Wäldern Südostchinas hat ein deutsch-chinesisches Team eine Wespe mit einem einzigartigen Nestbauverhalten entdeckt: Die „Ameisenmauer-Wespe“ verschließt ihr Nest mit einer Kammer voller toter Ameisen, um ihre Nachkommen vor Feinden zu schützen, wie Michael Staab und Prof. Dr. Alexandra-Maria Klein vom Institut für Geo- und Umweltnaturwissenschaften der Universität Freiburg sowie Wissenschaftler des Museums für Naturkunde Berlin und der chinesischen Akademie der Wissenschaften in Peking zeigen. Ein vergleichbares Verhalten ist bislang im gesamten Tierreich noch nicht gefunden worden.


Die "Ameisenmauer-Wespe" / Quelle: Michael Staab


Die neu entdeckte Wespenart verschließt ihr Nest mit einer Kammer voller toter Ameisen. Quelle: Merten Ehmig

„Als ich eine solche mit Ameisen gefüllte Kammer das erste Mal sah, hat es mich sofort an die historische chinesische Mauer erinnert. Ebenso wie die chinesische Mauer das Kaiserreich vor Angriffen durch plündernde Reiternomaden geschützt hat, schützt die Ameisenmauer den Nachwuchs der neu beschriebenen Wespenart vor Feinden“, beschreibt Staab den Fund. Die Wissenschaftlerinnen und Wissenschaftler veröffentlichten ihre Entdeckung in der internationalen Fachzeitschrift „PLOS ONE“.

Die neue Wespenart mit dem wissenschaftlichen Namen Deuteragenia ossarium gehört zur Familie der Wegwespen. Bei diesen baut normalerweise jedes Weibchen alleine ein eigenes Nest, das aus mehreren Kammern besteht.

Jede Kammer wird mit einer Spinne gefüllt, welche dem Nachwuchs als Nahrung dient und zuvor durch einen Stich gelähmt wurde. So auch bei der neu entdeckten „Ameisenmauer-Wespe“, die im Gegensatz zu allen bekannten Wegwespen-Arten die Zelle am Nesteingang nicht wie üblich leer lässt, sondern mit toten Ameisen füllt.

Mit ihren Untersuchungen zeigen die Wissenschaftler, dass die Ameisenmauer einen sehr effektiven Nestschutz darstellt. Verglichen mit anderen Wespen aus dem gleichen Lebensraum wird der Nachwuchs der „Ameisenmauer-Wespe“ wesentlich seltener von Feinden angegriffen.

Die Wissenschaftler nehmen an, dass das Nest der Wespe durch die Mauer ähnlich wie das Nest einer wehrhaften Ameisenart riecht und deshalb von Feinden gemieden wird. Der genaue Verteidigungsmechanismus ist noch unklar und Gegenstand aktueller Forschung.

„Die Entdeckung einer neuen Art wirft neue Fragen auf. Wir wollen verstehen, warum Artenvielfalt für ein funktionierendes Ökosystem wichtig ist“, sagt Klein. Die Deutsche Forschungsgemeinschaft fördert die Forschergruppe „Biodiversity-Ecosystem Functioning (BEF) China“, in deren Rahmen die Forschung stattfand.


Mehr Informationen zur DFG-Forschergruppe „BEF China“:
http://www.bef-china.de/index.php/en/

Melanie Hübner | Albert-Ludwigs-Universität Freiburg
Weitere Informationen:
http://www.pr.uni-freiburg.de/pm/2014/pm.2014-07-03.62

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics