Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Vorgänge in modernen ReRAM-Speicherzellen entschlüsselt

29.09.2015

Memristive Speicherzellen, kurz ReRAM, gelten als Superspeicher der Zukunft. Aktuell werden zwei Grundkonzepte verfolgt, die bisher mit unterschiedlichen Arten von aktiven Ionen in Verbindung gebracht wurden. Doch das ist nicht ganz richtig, wie Jülicher Forscher gemeinsam mit südkoreanischen, japanischen und amerikanischen Kollegen überraschend festgestellt haben. Denn in Valenzwechsel-Zellen (VCM) sind neben negativ geladenen Sauerstoff-Ionen – genau wie in elektrochemischen Metallisierungszellen (ECM) – auch positiv geladene Metall-Ionen aktiv. Der Effekt ermöglicht es, die Schalteigenschaften gezielt anzupassen und die beiden Konzepte ineinander zu überführen. (Nature Nanotechnology)

ReRAM-Zellen zeichnen sich durch eine besondere Eigenschaft aus: Ihr elektrischer Widerstand lässt sich durch das Anlegen einer elektrischen Spannung verändern. Dadurch verhalten sich die Zellen ähnlich wie ein magnetisches Material, das magnetisiert und wieder entmagnetisiert wird.


Bildung eines Tantalum (Ta)-Filaments in einer Ta/TaO(x)/Pt-ReRAM-Speicherzelle: Sauerstoffleerstellen und positiv geladene Ta(5+)-Ionen sind an dem Prozess beteiligt.

Copyright: Forschungszentrum Jülich / RWTH Aachen / Pössinger


Blick ins Oxid Cluster am Forschungszentrum Jülich, in dem resistive und andere Materialschichten im Ultrahochvakuum hergestellt und untersucht werden

Copyright: Forschungszentrum Jülich

Es gibt sozusagen einen ON- und einen OFF-Zustand. Auf diese Weise lassen sich digitale Informationen speichern, also Informationen, die nur zwischen „1“ und „0“ unterscheiden. Die wesentlichen Vorteile solcher ReRAMs: Sie lassen sich sehr schnell schalten, verbrauchen wenig Energie und sie behalten ihren Zustand auch dann eine lange Zeit bei, wenn keine äußere Spannung mehr anliegt.

Die memristiven Eigenschaften von ReRAMs beruhen auf mobilen Ionen. Sie bewegen sich, im Grunde ganz ähnlich wie in einer Batterie, zwischen zwei Elektroden in einer nur wenige Nanometer dicken Metalloxidschicht hin und her. Lange Zeit dachte die Forschung, dass sich VCMs und ECMs in ihrer Funktionsweise deutlich unterscheiden. Bei ECMs wird der ON- bzw. OFF-Zustand erreicht, indem sich metallische Ionen bewegen und faserartige Filamente bilden.

Das passiert, in dem eine elektrische Spannung angelegt wird. Dadurch wächst ein solches Filament zwischen den beiden Elektroden der Zelle. Die Zelle wird praktisch kurzgeschlossen – der Widerstand sinkt schlagartig. Durch die gezielte Steuerung des Vorgangs lassen sich dann die Informationen speichern.

Die Schalteigenschaften sogenannter VCMs wurden dagegen in erster Linie mit der Verschiebung von Sauerstoff-Ionen in Verbindung gebracht. Im Gegensatz zu den Metall-Ionen sind sie negativ geladen. Durch das Anlegen einer Spannung bewegen sich die Ionen aus einer sauerstoffhaltigen Metallverbindung heraus. Das Material wird schlagartig leitfähiger. Auch hier geht es darum, diesen Prozess gezielt zu steuern.

Allerdings entdeckten die Jülicher Forscher gemeinsam mit ihren Partnern von der Chonbuk National University in Jeonju, dem National Institute for Materials Science in Tsukuba und dem Massachussetts Institute of Technology (MIT) in Boston bei den VCMs einen unerwarteten zweiten Schaltprozess: Auch in VCMs tragen nämlich Metall-Ionen auch zu der Filamentbildung bei. Der Vorgang wurde erst sichtbar, weil die Wissenschaftler die Bewegung der Sauerstoff-Ionen unterdrückten. Dazu modifizierten sie die Oberflächen indem sie eine dünne Kohlenstoff-Schicht direkt über dem Elektrodenmaterial anbrachten.

In einem Fall verwendeten sie dafür das auch als „Wundermaterial“ bekannte Graphen, das nur aus einer einzigen Lage Kohlenstoff besteht. „Graphen soll den Transport von Sauerstoff-Ionen durch die Phasengrenze unterdrücken, und die Reaktionen von Sauerstoff bremsen. Wir konnten plötzlich eine Schaltcharakteristik beobachten, die der einer ECM-Zelle gleicht und gehen daher davon aus, dass auch in VCMs bewegliche Metall-Ionen aktiv sind. Dies wurde durch zusätzliche Experimenten mit Rastertunnelmikroskop (STM) und Diffusionsexperimente bestätigt. Offensichtlich unterstützen die Metall-Ionen den Schaltprozess zusätzlich“, so Dr. Ilia Valov, Elektrochemiker am Jülicher Peter Grünberg Institut (PGI-7).

Der Einbau einer derartigen Zwischenschicht aus Kohlenstoff würde es erlauben, bei VCMs vom einen zum anderen Schaltprozess zu wechseln. Daraus würden sich neue Möglichkeiten ergeben, ReRAMs zu konstruieren. „Je nach Anwendung kann man sich unsere Erkenntnisse zunutze machen, indem der Effekt bewusst verstärkt oder gezielt unterdrückt wird“, erläutert Valov. Die Ergebnisse der Wissenschaftler werfen jedoch auch Fragen auf: „Die bisherigen Modelle und Untersuchungen müssen auf Grundlage dieser Erkenntnisse nochmal überarbeitet und angepasst werden“, sagt der Jülicher Wissenschaftler. Weitere Tests sollen zudem klären, wie sich neuartige Bauelemente, die auf den Erkenntnissen aufbauen, in der Praxis verhalten.

Die Forschungsarbeiten wurden zum Teil vom BMBF (Projekt Nr. 03X0140) und SFB 917 der DFG finanziert.

Die Ergebnisse sind in den Fachzeitschriften „Nature Nanotechnology“ und „Advanced Materials“ erschienen.

Originalpublikationen:
Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems
Anja Wedig, Michael Luebben, Deok-Yong Cho, Marco Moors, Katharina Skaja, Vikas Rana, Tsuyoshi Hasegawa, Kiran K. Adepalli, Bilge Yildiz, Rainer Waser, Ilia Valov
Nature Nanotechnology (published 28 September 2015), DOI: 10.1038/nnano.2015.221
Abstract: http://dx.doi.org/10.1038/nnano.2015.221

Graphene-Modified Interface Controls Transition from VCM to ECM Switching Modes in Ta/TaOx Based Memristive Devices
Michael Lübben, Panagiotis Karakolis, Vassilios Ioannou-Sougleridis, Pascal Normand, Panagiotis Dimitrakis, Ilia Valov
Advanced Materials (first published 10 September 2015), DOI: 10.1002/adma.201502574
Abstract:
http://onlinelibrary.wiley.com/doi/10.1002/adma.201502574/abstract

Weitere Informationen:
Internet-Dossier „Resistive Speicher“: http://www.fz-juelich.de/portal/DE/Forschung/it-gehirn/ResistiveSpeicher/_node.h...
Peter Grünberg Institut, Elektronische Materialien (PGI-7): http://www.fz-juelich.de/pgi/pgi-7/DE/Home/home_node.html

Ansprechpartner:
Dr. Ilia Valov, Peter Grünberg Institut, Elektronische Materialien (PGI-7)
Tel. +49 2461 61-2994
i.valov@fz-juelich.de

Pressekontakt:
Tobias Schlößer, Unternehmenskommunikation
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-09-28nnano_...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik