Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Virusabwehr in Säugetieren entdeckt

11.10.2013
Forschende der ETH Zürich haben in Mäusen einen Bestandteil des angeborenen Immunsystems entdeckt, der bislang nur bei Pflanzen und wirbellosen Tieren bekannt war. Dieses tritt in Stammzellen und anderen Vorläuferzellen besonders deutlich zutage und schützt sie vor Virusinfektionen.

Viele Virusinfektionen werden durch die angeborene Immunantwort im Keime erstickt. Dabei erkennen bestimmte Proteine im Zellinneren die Virusinfektion und lösen eine Signalkaskade aus – die sogenannte Interferon-Antwort. Diese aktiviert einen Schutzmechanismus in den umliegenden Zellen, während die zuerst infizierte Zelle meist abstirbt.


Kurze RNA-Moleküle sind Kernstück einer antiviralen Immunantwort, die neu in Säugetieren nachgewiesen wurde.

O. Voinnet / ETH Zürich und S.W. Ding / University of Riverside, USA

In Pflanzen und wirbellosen Tieren ist noch ein weiterer Mechanismus der Virusabwehr bekannt, die sogenannte RNA-Interferenz (RNAi). Diese nutzt ein Zwischenprodukt des Virus-Kopierprozesses, um eine Waffe gegen den Virus selbst zu bauen. Obwohl RNAi auch in Säugetieren vorhanden ist, gingen Forschende bislang davon aus, dass sie zwar in andere zelluläre Prozesse in der Regulation von Genen, aber nicht in die Immunabwehr involviert sei. Den Beweis, dass RNAi doch zur Virusabwehr in Säugetieren beiträgt, veröffentlichen nun Olivier Voinnet, Professor für RNA-Biologie an der ETH Zürich, und seine Kollegen im Fachjournal Science.

Kleine RNAs als spezifische Antivirus-Waffe

Die Forschenden infizierten Stammzellen aus Mäusen mit zwei Viren, dem Encephalomyocarditis-Virus (EMCV) und dem Nodamura-Virus (NoV). Anschliessend konnten sie in den Zellen kurze RNA-Stücke von um die 22 Nukleotiden Länge nachweisen, die eindeutig der Sequenz des Virus-Erbguts entsprachen und alle Merkmale der zentralen Effektor-Moleküle der RNAi aufwies: der small interfering oder siRNAs. Dies war der Nachweis, dass die Virusinfektion die RNAi-Maschinerie in diesen Zellen aktiviert hatte.

Der Auslöser für RNAi ist ein ungewöhnliches RNA-Molekül, das beim Kopieren des Virus-Erbguts entsteht: ein langes, doppelsträngiges RNA-Molekül. Dieses wird durch Bestandteile der RNAi-Maschinerie in die kurzen siRNAs zerschnitten, die im weiteren Verlauf als eine Zielsuchvorrichtung dienen: Weil sie der Virus-RNA entstammen und somit perfekt zu dieser passen, lenken sie molekulare Scheren-Proteine spezifisch zur Virus-RNA. Diese wird daraufhin in harmlose Teile zerstückelt. Der Virus kann sich folglich nicht mehr vermehren.

Idealer Schutz für Vorläuferzellen

Dafür, dass die Rolle von RNAi in der Virusabwehr von Säugetieren bislang übersehen wurde, nennt Voinnet zwei Gründe: Erstens haben Studien in Pflanzen – durchgeführt von seinem Forschungsteam – und später in wirbellosen Tieren gezeigt, dass viele Viren eine Gegenwehr entwickelt haben, welche die RNAi-Maschinerie der befallenen Zelle hemmt. Im Falle, dass eine solche Gegenwehr auch in auf Säugetiere spezialisierten Viren existiert, würde sie antivirale RNAi verbergen. Zweitens suchten bislang die meisten Wissenschaftler nach Hinweisen auf antivirale RNAi in spezialisierten Zellen, bei denen die Interferon-Antwort den Löwenanteil der Immunabwehr übernimmt. Voinnet und seine Kollegen konzentrierten sich dagegen auf Stammzellen.

Stamm- und vermutlich auch Vorläuferzellen können keine Interferon-Antwort produzieren und besitzen somit keine klassische angeborene Immunität. Dies mache durchaus Sinn, sagt Voinnet, denn die Interferon-Antwort führt zum Tod der infizierten Zelle. Da aus Vorläuferzellen ganze Populationen differenzierter Zellen hervorgehen, würden diese mit dem Absterben der Vorläuferzelle ebenfalls ausgelöscht. Ähnlich fatal wäre eine Virusinfektion in einer Stammzelle, da auch alle von ihr abstammenden Zelllinien infiziert wären. «RNAi ist deshalb perfekt dazu geeignet, Vorläuferzellen vor Viren zu schützen. Sie könnte gar die einzige Art von Immunität sein, die diese Zellen vor Viren schützt», sagt Voinnet. Er fügt an: «Ich will damit nicht suggerieren, dass antivirale RNAi nur in Stamm- und Vorläuferzellen existiert: In unserer Studie zeigen wir, dass wir RNAi auch in differenzierten Zellen beobachten, nur auf sehr viel niedrigerem Level.“

«Das Schöne ist die Einfachheit»

Um die Beweise für eine Rolle von RNAi in der Virusabwehr zu erhärten, veränderten die Forschenden den Nodamura-Virus (NoV) genetisch und eliminierten, was sie für seine Gegenwehr gegen RNAi hielten. Daraufhin infizierten sie erneut Maus-Stammzellen mit dem veränderten Virus und konnten beobachten, dass die Zellen diesen Virus besser in Schach hielten als den unveränderten NoV. Zudem fanden die Forschenden nur nach Infektion mit dem modifizierten Virus siRNAs, die dem Virus-Genom entsprachen. Dies bot den Beweis dafür, dass RNAi tatsächlich den Virus in Schach hielt. Dieser Mechanismus trat jedoch erst zutage, als NoVs Gegenwehr gegen RNAi eliminiert war. «Somit existiert ein ähnliches Gegenspiel aus Virusabwehr und viraler Gegenwehr in Säugetieren, Pflanzen und wirbellosen Tieren», folgert Voinnet.

In einer Studie, die von Voinnets Forscherkollegen Shou Wie Ding (University of Riverside, USA) parallel durchgeführt und veröffentlicht wurde, zeigten die Forschenden um Ding, dass siRNAs auch im Gewebe neugeborener Mäuse produziert wurden, die sie mit dem veränderten NoV infizierten. Zum Erstaunen der Forscher waren diese siRNAs identisch mit jenen, die Voinnet und sein Team in den Experimenten mit Stammzellen gefunden hatten. Diese siRNAs verliehen den Mäusen einen fast vollkommenen Schutz vor dem Virus. «Dieser Beweis war wichtig, um zu zeigen, dass antivirale RNAi im lebenden Organismus funktioniert, nicht nur in Stammzellen in der Kulturschale», erklärt Voinnet.

Die Forschenden haben damit einen wichtigen Bestandteil des angeborenen Immunsystems in Säugetieren aufgedeckt. «Das Schöne an dem System ist seine Einfachheit und, wie wir jetzt wissen, seine Allgemeingültigkeit», sagt Voinnet. «Die RNAi-Maschinerie ist Teil der Zelle selbst, zur spezifischen Waffe wird es aber dank der RNA, die der Virus produziert, den es zu bekämpfen gilt. Da die Spezifität der Immunantwort vom Virus selbst bereitgestellt wird, kann sich der Mechanismus fast jedem Virus anpassen. Angeborener könnte Immunität kaum sein!» schliesst Voinnet.

Literaturhinweis:
Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Din SW, Voinnet O: Antiviral RNA Interference in Mammalian Cells, Science, October 11, 2013 DOI: http://www.sciencemag.org/lookup/doi/10.1126/science.1241930.

Für weitere Informationen kontaktieren Sie bitte Professor Voinnet per E-Mail (Englisch oder Französisch): voinneto@ethz.ch

Angelika Jacobs | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie