Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Untersuchungsmethode gibt Aufschluss über Proteinentstehung

23.12.2011
Forscherteam der Universität Heidelberg und des Deutschen Krebsforschungszentrums legt Grundstein für die Untersuchung von „Faltungshelfern“

Mit einer neu entwickelten Untersuchungsmethode haben Heidelberger Molekularbiologen neue Erkenntnisse über die Entstehung von Proteinen gewonnen. Die Wissenschaftler um Prof. Dr. Bernd Bukau und Dr. Günter Kramer von der DKFZ-ZMBH-Allianz, einer Forschungsallianz zwischen dem Zentrum für Molekulare Biologie Heidelberg (ZMBH) der Universität und dem Deutschen Krebsforschungszentrum (DKFZ), entwickelten zusammen mit Prof. Dr. Jonathan Weissman von der University of California in San Francisco das „selective ribosome profiling“.

Diese Methode, die für einen speziellen „Faltungshelfer“ (molekulare Chaperone) entwickelt wurde, ermöglicht es, das Protein-Produktionsprofil einer Zelle zu ermitteln und die Beteiligung der Chaperone bei der Faltung neusynthetisierter Proteine zu analysieren. „Diese neuen Erkenntnisse ermöglichen erstmals ein molekulares Verständnis dafür, wie die in kurzer Zeit zu erfüllenden Reifungs- und Faltungsprozesse von neu synthetisierten Proteinen so koordiniert werden, dass die beteiligten Faktoren sich nicht gegenseitig beeinträchtigen“, erklärt Prof. Bukau. Die Ergebnisse wurden in der Fachzeitschrift „Cell“ veröffentlicht.

Proteine werden als lange Ketten aufeinanderfolgender Aminosäuren hergestellt, die eine bestimmte dreidimensionale Struktur annehmen – also sich falten – müssen, damit das Protein funktionsfähig ist. Eine falsche Faltung kann die betroffenen Zellen schädigen und zu neurodegenerativen Erkrankungen wie zum Beispiel Parkinson führen. Um die korrekte Faltung von Proteinen zu gewährleisten, besitzt jede Zelle eine spezielle Klasse von Faktoren, die als molekulare Chaperone bezeichnet werden. Diese stellen sicher, dass die Struktur vorhandener Proteine erhalten bleibt und dass Proteine, die gerade neu hergestellt werden, die richtige Struktur bilden. Wie diese Hilfestellung der Chaperone genau funktioniert, ist allerdings noch unklar.

Mit Hilfe des „selective ribosome profiling“ konnten die Wissenschaftler um Prof. Bukau und Dr. Kramer nun das Protein-Produktionsprofil einer Zelle ermitteln und die Beteiligung des bakteriellen Chaperons Trigger Faktor bei der Faltung neu-synthetisierter Proteine analysieren. Dazu wurden aktive Ribosomen – die Entstehungsorte von Proteinen – isoliert und mit Hilfe von Hochdurchsatz-Sequenzierung ermittelt, welches Protein zu diesem Zeitpunkt hergestellt wird und ob Trigger Faktor dieses Protein in seiner Faltung unterstützt. „Wir konnten zum ersten Mal das komplette Spektrum neu-synthetisierter Proteine identifizieren, das von einem Chaperon bei der Faltung begleitet wird“, erläutert Dr. Kramer.

Es zeigte sich, dass Trigger Faktor mit der Mehrheit der Proteine der Zelle – weit über 1.000 verschiedene Spezies – noch während ihrer Synthese in Kontakt tritt. Dabei bindet Trigger Faktor nicht jede wachsende Aminosäurekette mit gleicher Effizienz, sondern wählt seine Bindepartner hauptsächlich basierend auf deren zukünftigem Bestimmungsort innerhalb der Zelle aus. „Tatsächlich konnte eine neue Klasse von Substraten identifiziert werden, die von Trigger Faktor stärker als alle bisher bekannten Substrate gebunden wird“, erklärt Dr. Kramer. Dabei handelt es sich um Porenproteine der äußeren Zellmembran von Escherichia coli, die hauptsächlich für den Transport von Stoffen durch die Zellhülle verantwortlich sind.

Das „selective ribosome profiling“ ermöglicht zudem eine präzise Bestimmung des Zeitpunkts, an dem das Chaperon an das Ribosom und die wachsende Aminosäurekette bindet. „Entgegen der etablierten Sicht bindet Trigger Faktor nicht sofort an die aus dem Ribosom herauswachsende Aminosäurekette, sondern mit einer deutlichen Verzögerung. Diese verspätete Bindung des wachsenden Proteins schafft wiederum ein Zeitfenster für weitere Faktoren, etwa Enzyme, die ebenfalls wichtige Funktionen bei der Reifung des Proteins übernehmen“, erläutert Prof. Bukau. Die Methode des „selective ribosome profiling“ wurde speziell für das Chaperon Trigger Faktor entwickelt, kann aber leicht auf die Untersuchung anderer Chaperone aus Zellen höherer Organismen bis hin zum Menschen übertragen werden. „Damit ist ein wichtiger Grundstein gelegt für eine detailliertere Untersuchung der Funktion molekularer Chaperone bei der Faltung neusynthetisierter Proteine“, erklärt Prof. Bukau.

Originalpublikation:
E. Oh, A. Becker, A. Sandikci, D. Huber, R. Chaba, F. Gloge, R. Nichols, A. Typas, C. Gross, G. Kramer, J. Weissman, B. Bukau: Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor In Vivo. Cell (2011), doi: 10.1016/j.cell.2011.10.044
Kontakt:
Prof. Dr. Bernd Bukau
Zentrum für Molekulare Biologie (ZMBH) und Deutsches Krebsforschungszentrum
Telefon (06221) 54-6795
bukau@zmbh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik