Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Strategie für den Einsatz „alter“ Antibiotika

10.02.2014
Tübinger Forscher entdecken, warum bakterielle Krankheitserreger das bewährte Antibiotikum Fosfomycin teilweise ins Leere laufen lassen

Die Ausbreitung multiresistenter Krankheitserreger gilt in der medizinischen Fachwelt und der breiten Öffentlichkeit inzwischen gleichermaßen als eine gravierende Bedrohung. Entsprechend ist der Ruf nach neuen schlagkräftigen Antibiotika in den vergangenen Jahren immer lauter geworden.

Doch die Entwicklung neuer Wirkstoffe ist nicht nur teuer, sondern auch sehr langwierig. Konzentrieren sich Wissenschaftler auf die Optimierung bereits vorhandener Therapien, kann wertvolle Zeit gewonnen werden.

Diesen Weg eröffnet die Arbeitsgruppe von Professor Christoph Mayer vom Interfakultären Institut für Mikrobiologie und Infektionsmedizin der Universität Tübingen, die zum Sonderforschungsbereich „Die bakterielle Zellhülle“ (SFB 766) gehört. In Kooperation mit der Graduiertenschule Chemische Biologie der Universität Konstanz und gefördert durch ein Dr. Marietta Lutze-Stipendium der Firma Dr. Kade entdeckten die Forscher, wie krankheitserregende Bakterien der Gattung Pseudomonas einen wichtigen Baustein ihrer Zellwand recyceln und dabei die Wirkung des Antibiotikums Fosfomycin umgehen. Die Wissenschaftler haben durch die Aufklärung dieser „inneren“ Resistenz Ansatzpunkte für den effizienteren Einsatz des Wirkstoffs gefunden.

Bakterien der Gattungen Pseudomonas und Acinetobacter verursachen vor allem in Krankenhäusern vielfach Wundinfektionen, lebensbedrohliche Lungen- und Hirnhautentzündungen sowie teilweise tödliche Blutvergiftungen (Sepsis) und besitzen eine hohe „innere“ Resistenz gegenüber einer Vielzahl antibiotischer Wirkstoffe. Die Zellhülle der Bakterien ist anders aufgebaut als die äußere Membran menschlicher Zellen. Vor allem enthalten die Bakterien Zellwände aus Peptidoglykan, ein aus Zuckern und Aminosäuren zusammengesetztes Makromolekül, das große Netzwerke bildet und der Zelle hohe mechanische Stabilität verleiht. Für Bakterien ist die Peptidoglykan-Herstellung unerlässlich. Daher stellt dieser Stoffwechselweg allgemein ein wichtiges Angriffsziel für antibiotische Wirkstoffe dar. Wenn die Bakterien keine neuen Zellwände bilden können, können sie sich auch nicht vermehren – die Infektion wird gestoppt.

Das Antibiotikum Fosfomycin beispielsweise verhindert den Aufbau der bakteriellen Zellhülle, indem es die Herstellung einer Vorstufe des Peptidoglykans hemmt. Die Wissenschaftler entdeckten je-doch, dass die Pseudomonas-Bakterien die Vorstufen nicht immer neu bilden, sondern teilweise auch die vorhandenen als Bausteine wiederverwenden. Die Peptidoglykan-Vorstufen umgehen durch einen „Bypass“ den durch Fosfomycin gehemmten Schritt bei der Neubildung und schränken so die Wirksamkeit des Antibiotikums stark ein: nach Berechnungen werden circa 50 Prozent der Vorstufen aus Recyclingmaterial gebildet.

Die Wissenschaftler wollten im nächsten Schritt herausfinden, ob der neu entdeckte Recyclingweg die Wirksamkeit des Fosfomycins beeinflusst. In Pseudomonas-Bakterienstämmen machten sie zwei neuartige Gene ausfindig, die im Recyclingweg notwendig waren und schalteten sie im Versuch unter Laborbedingungen aus. Dadurch konnten sie die „innere“ Resistenz gegen Fosfomycin überwinden, das Antibiotikum wirkte deutlich effizienter. Recherchen der Wissenschaftler ergaben, dass die untersuchten Gene bei einer Vielzahl von Bakterien, darunter vielen Krankheitserregern, zu finden sind. Sie alle können vermutlich den Recyclingweg nutzen und damit die Wirkung von Fosfomycin abschwächen.

Anders als im Labor lassen sich Gene in der Natur oder in den Bakterien eines infizierten Menschen nicht einfach ausschalten. Dafür bieten jedoch die Genprodukte, die Enzyme, gute Angriffspunkte für zusätzliche Medikamente. „Wir kennen nun wichtige Ansatzpunkte, um die Wirkung von Fosfomycin zu optimieren. Sinnvoll wäre es, das Antibiotikum durch einen passenden Wirkstoff zu ergänzen, der das Peptidoglykan-Recycling hemmt“, erklärt Christoph Mayer. Seiner Einschätzung zufolge könnte die rationale Kombination bekannter Antibiotika mit neuen Wirkstoffen ein vielversprechender Ansatz bei der Entwicklung neuer Therapien darstellen.

Originalpublikation:
Jonathan Gisin, Alexander Schneider, Bettina Nägele, Marina Borisova, Christoph Mayer (2013) A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nature Chemical Biology, 9: 491-93, doi 10.1038/nchembio.1289.
Kontakt:
Prof. Dr. Christoph Mayer
Universität Tübingen
Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT)
Sonderforschungsbereich 766 „Die bakterielle Zellhülle“
Telefon +49 7071 29-74645
christoph.mayer[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften