Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Strategie für den Einsatz „alter“ Antibiotika

10.02.2014
Tübinger Forscher entdecken, warum bakterielle Krankheitserreger das bewährte Antibiotikum Fosfomycin teilweise ins Leere laufen lassen

Die Ausbreitung multiresistenter Krankheitserreger gilt in der medizinischen Fachwelt und der breiten Öffentlichkeit inzwischen gleichermaßen als eine gravierende Bedrohung. Entsprechend ist der Ruf nach neuen schlagkräftigen Antibiotika in den vergangenen Jahren immer lauter geworden.

Doch die Entwicklung neuer Wirkstoffe ist nicht nur teuer, sondern auch sehr langwierig. Konzentrieren sich Wissenschaftler auf die Optimierung bereits vorhandener Therapien, kann wertvolle Zeit gewonnen werden.

Diesen Weg eröffnet die Arbeitsgruppe von Professor Christoph Mayer vom Interfakultären Institut für Mikrobiologie und Infektionsmedizin der Universität Tübingen, die zum Sonderforschungsbereich „Die bakterielle Zellhülle“ (SFB 766) gehört. In Kooperation mit der Graduiertenschule Chemische Biologie der Universität Konstanz und gefördert durch ein Dr. Marietta Lutze-Stipendium der Firma Dr. Kade entdeckten die Forscher, wie krankheitserregende Bakterien der Gattung Pseudomonas einen wichtigen Baustein ihrer Zellwand recyceln und dabei die Wirkung des Antibiotikums Fosfomycin umgehen. Die Wissenschaftler haben durch die Aufklärung dieser „inneren“ Resistenz Ansatzpunkte für den effizienteren Einsatz des Wirkstoffs gefunden.

Bakterien der Gattungen Pseudomonas und Acinetobacter verursachen vor allem in Krankenhäusern vielfach Wundinfektionen, lebensbedrohliche Lungen- und Hirnhautentzündungen sowie teilweise tödliche Blutvergiftungen (Sepsis) und besitzen eine hohe „innere“ Resistenz gegenüber einer Vielzahl antibiotischer Wirkstoffe. Die Zellhülle der Bakterien ist anders aufgebaut als die äußere Membran menschlicher Zellen. Vor allem enthalten die Bakterien Zellwände aus Peptidoglykan, ein aus Zuckern und Aminosäuren zusammengesetztes Makromolekül, das große Netzwerke bildet und der Zelle hohe mechanische Stabilität verleiht. Für Bakterien ist die Peptidoglykan-Herstellung unerlässlich. Daher stellt dieser Stoffwechselweg allgemein ein wichtiges Angriffsziel für antibiotische Wirkstoffe dar. Wenn die Bakterien keine neuen Zellwände bilden können, können sie sich auch nicht vermehren – die Infektion wird gestoppt.

Das Antibiotikum Fosfomycin beispielsweise verhindert den Aufbau der bakteriellen Zellhülle, indem es die Herstellung einer Vorstufe des Peptidoglykans hemmt. Die Wissenschaftler entdeckten je-doch, dass die Pseudomonas-Bakterien die Vorstufen nicht immer neu bilden, sondern teilweise auch die vorhandenen als Bausteine wiederverwenden. Die Peptidoglykan-Vorstufen umgehen durch einen „Bypass“ den durch Fosfomycin gehemmten Schritt bei der Neubildung und schränken so die Wirksamkeit des Antibiotikums stark ein: nach Berechnungen werden circa 50 Prozent der Vorstufen aus Recyclingmaterial gebildet.

Die Wissenschaftler wollten im nächsten Schritt herausfinden, ob der neu entdeckte Recyclingweg die Wirksamkeit des Fosfomycins beeinflusst. In Pseudomonas-Bakterienstämmen machten sie zwei neuartige Gene ausfindig, die im Recyclingweg notwendig waren und schalteten sie im Versuch unter Laborbedingungen aus. Dadurch konnten sie die „innere“ Resistenz gegen Fosfomycin überwinden, das Antibiotikum wirkte deutlich effizienter. Recherchen der Wissenschaftler ergaben, dass die untersuchten Gene bei einer Vielzahl von Bakterien, darunter vielen Krankheitserregern, zu finden sind. Sie alle können vermutlich den Recyclingweg nutzen und damit die Wirkung von Fosfomycin abschwächen.

Anders als im Labor lassen sich Gene in der Natur oder in den Bakterien eines infizierten Menschen nicht einfach ausschalten. Dafür bieten jedoch die Genprodukte, die Enzyme, gute Angriffspunkte für zusätzliche Medikamente. „Wir kennen nun wichtige Ansatzpunkte, um die Wirkung von Fosfomycin zu optimieren. Sinnvoll wäre es, das Antibiotikum durch einen passenden Wirkstoff zu ergänzen, der das Peptidoglykan-Recycling hemmt“, erklärt Christoph Mayer. Seiner Einschätzung zufolge könnte die rationale Kombination bekannter Antibiotika mit neuen Wirkstoffen ein vielversprechender Ansatz bei der Entwicklung neuer Therapien darstellen.

Originalpublikation:
Jonathan Gisin, Alexander Schneider, Bettina Nägele, Marina Borisova, Christoph Mayer (2013) A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nature Chemical Biology, 9: 491-93, doi 10.1038/nchembio.1289.
Kontakt:
Prof. Dr. Christoph Mayer
Universität Tübingen
Interfakultäres Institut für Mikrobiologie und Infektionsmedizin (IMIT)
Sonderforschungsbereich 766 „Die bakterielle Zellhülle“
Telefon +49 7071 29-74645
christoph.mayer[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten