Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Rolle für Membranbausteine

09.01.2012
Heidelberger Forscher entdecken unerwartete Genauigkeit der Wechselwirkung von Membranbausteinen

Biochemiker der Universität Heidelberg haben mit Hilfe eines neu entwickelten Verfahrens Licht in die bisher weitgehend unerforschte Funktionsweise von Membranbausteinen gebracht.

Die Wissenschaftler am Biochemie-Zentrum der Universität Heidelberg (BZH) entdeckten in Zusammenarbeit mit Bioinformatikern der Universität Stockholm in der biologischen Membran, die eine Zelle eines Organismus umgibt, eine hochspezifische Erkennung und Wechselwirkung zwischen dem wasserabstoßenden Teil eines Proteins und eines Lipids.

Der Lipidbaustein reguliert in der wasserabstoßenden Phase von biologischen Membranen einen intrazellulären Transportprozess. Bisher hatte die Forschung eine derartige Wechselwirkung in Membranen für nicht wahrscheinlich gehalten. Die Forschungsergebnisse wurden in der Fachzeitschrift „Nature“ veröffentlicht.

„Diese neue und unerwartete Rolle eines Membran-Lipidbausteins ist deshalb aufregend, weil biologische Membranen aus mehr als 1.000 verschiedenen Lipidbausteinen aufgebaut sind, die exakt mit einigen der mehr als 10.000 Membranproteine binden und damit deren Aktivität regulieren können“, erklärt Prof. Dr. Felix Wieland vom BZH, der die Forschergruppe zusammen mit Dr. Britta Brügger leitet. „Mit diesen Befunden ist die Tür offen zur Erforschung eines neuartigen molekularen Mechanismus der Kontrolle zellulärer Aktivitäten.“ Die Heidelberger Wissenschaftler arbeiteten bei ihren Untersuchungen mit den Forschungsgruppen von Prof. Dr. Gunnar von Heijne und Prof. Dr. Erik Lindahl in Stockholm zusammen.

Organismen funktionieren durch eine Vielzahl exakter Bindungen unterschiedlicher biologischer Bausteine miteinander. Wie die Grundprinzipien solcher hochspezifischer Wechselwirkungen im wässrigen Milieu in Zellen funktionieren, ist der Wissenschaft bereits bekannt. „Im Gegensatz dazu stellt man sich den inneren, wasserabstoßenden Raum biologischer Membranen weitgehend wie ein Öl vor, in dem Proteine herumschwimmen“, erläutert Prof. Wieland. „Die Prinzipien der spezifischen Erkennung von Bausteinen in diesem ‚öligen Meer aus Lipiden’ sind bisher wenig bekannt. Das liegt daran, dass die Prinzipien der spezifischen Bindung im Wässrigen nicht auf nicht-wässrige Phasen anwendbar sind, außerdem stehen noch nicht lange empfindliche Methoden zur Bestimmung von Membran-Lipiden zur Verfügung.“

Um zu verstehen, wie der Transport von Membranvesikeln in einer Zelle funktioniert, arbeiteten die Wissenschaftler Methoden aus, mit denen man alle Lipidbausteine einer biologischen Membran mit hoher Empfindlichkeit auch mengenmäßig genau erfassen kann. „Bei der Untersuchung solcher Vesikel fiel uns auf, dass ihre Lipidzusammensetzung sich von den Membranen unterschied, aus denen sie gebildet worden waren“, erläutert Dr. Brügger. „Dieser Unterschied konnte nur erklärt werden, wenn man annahm, dass in der Membran eine hochspezifische Erkennung zwischen den Bausteinen möglich ist.“ Die Forscher entwickelten daher ein Verfahren zur Vermessung solcher Wechselwirkungen in der Lipidphase im Reagenzglas. Damit konnten sie Befunde aus der lebenden Zelle bestätigen und ein Strukturmerkmal im betreffenden Protein charakterisieren, das für die Spezifität der Wechselwirkung verantwortlich ist. „,Transplantiert’ man diesen Strukturteil in ein anderes Protein, welches vorher nicht in der Lage war, den Lipidbaustein zu erkennen, dann erwirbt dieses Protein die Fähigkeit seiner spezifischen Erkennung“, erklärt Prof. Wieland.

Die Forscher erkannten auch eine Funktion dieser exakten Wechselwirkung: Durch seine Bindung stimuliert das Lipid sein Protein dazu, sich mit einem identischen Protein zusammenzuschließen. Nur das daraus resultierende „Doppelprotein” kann zur Bildung eines Transportvesikels beitragen. „Der Lipidbaustein übernimmt also die Rolle eines ‚Kofaktors’ und reguliert damit einen zellulären Prozess“, erklärt Prof. Wieland. Bisher haben die Wissenschaftler in Heidelberg und Stockholm bereits rund 50 Membranprotein-Kandidaten identifiziert, die allein mit den verschiedenen Mitgliedern einer Membranbausteinfamilie ähnlich spezifische Wechselwirkungen eingehen könnten.

Nähere Informationen sind im Internet unter http://www.uni-heidelberg.de/zentral/bzh zusammengestellt.

Hinweis an die Redaktionen: Bildmaterial ist in der Pressestelle erhältlich.

Originalpublikation:
F-X. Contreras, A.M. Ernst, P. Haberkant, P. Björkholm, E. Lindahl, B. Gönen, C. Tischer, A. Elofsson, G. von Heijne, C. Thiele, R. Pepperkok, F. Wieland, B. Brügger: Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature (8. Januar 2012), doi: 10.1038/nature10742
Kontakt:
PD Dr. Britta Brügger und Prof. Dr. Felix Wieland
Biochemiezentrum der Universität Heidelberg
Telefon (06221) 54-5426 oder -4150
felix.wieland@bzh.uni-heidelberg.de und britta.bruegger@bzh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de/zentral/bzh

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie