Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Regeln der Teamarbeit

17.12.2010
Spezielle Proteine schützen unsere Zellen im Körper. Zum ersten Mal gelang es Forschern, diesen Schutzmechanismus bei kleinen Hitzeschockproteinen zu erklären.

Kleine Hitzeschockproteine arbeiten in Teams, sogenannten Oligomeren, die strukturelle Cluster darstellen. Ihre Aufgabe entspricht einem Sicherungssystem. Sie sollen sicherstellen, dass keine für die Zelle negativen Effekte auftreten, wenn Proteine ihre Struktur verlieren. Diese Struktur, der Wissenschaftler spricht auch von Faltung, ändert sich zum Beispiel bei Temperaturschwankungen.

Hartmut Oschkinat und Barth van Rossum vom Leibniz-Institut für Molekulare Pharmakologie (FMP) haben zusammen mit Forschern der Universität von Washington in Seattle (UW) mehrere Methoden kombiniert, um die Struktur eines repräsentativen Clusters des Hitzeschockproteins AlphaB-Kristallin darzustellen. Neben der kernmagnetischen-Resonanzspektroskopie (NMR) arbeiteten sie mit der sogenannten Kleinwinkel-Röntgenbeugung. Die NMR ermöglicht die Messung von Abständen zwischen Atomen, während die Kleinwinkel-Röntgenbeugung die allgemeine Form der Cluster wiedergibt. Das Besondere dabei ist, dass mit NMR Informationen über die Struktur von heterogenen Clustermischungen gewonnen werden konnten, die für die kleinen Hitzeschockproteine charakteristisch sind.

Die Forscher konnten zeigen, dass vor allem Cluster aus 24 einzelnen Proteinen auftreten, die die Form eines kugelförmigen Komplexes bilden, der innen hohl ist. Gleichzeitig konnten sie sehr wichtige Details erkennen, wie die Verbindungen zwischen den einzelnen Teilen des Clusters und die paarweise Anordnung der einzelnen Proteine (Dimer).

Jedes einzelne Proteinmolekül weist eine "Sandwich-Struktur" aus β-Faltblättern auf, die unter Verlängerung der Faltblattstruktur an ein weiteres Molekül binden. Aufgrund der atomaren Auflösung der Struktur konnten die Forscher die Schnittstelle des Dimers darstellen. Außerdem untersuchten sie die strukturellen Konsequenzen von Mutationen, die im menschlichen Körper in einer frühen Phase des grauen Stars auftreten oder zu Herzkrankheiten führen können.

Ziel der strukturellen Untersuchung ist es, die Aktivierung des Hitzeschockproteins zu verstehen.

Diese spielt eine Rolle bei Durchblutungsstörungen, wie sie bei Herzinfarkt oder Schlaganfall auftreten. In solchen Fällen sinkt der pH-Wert in Zellen, was sich auf die Dynamik der Proteincluster auswirkt. Hartmut Oschkinat und Barth van Rossum konnten zeigen, dass in diesem Fall der Zusammenhalt des Clusters verringert wird und die Verbindungstellen zwischen einzelnen Proteinen freiliegen. Das ist die Voraussetzung, damit sie ihre Funktionen ausüben können: aus der Form geratene Proteine zu binden und damit die Zelle zu schützen. Zusammen mit Stefan Jehle (FMP) und Ponni Rajagopal (UW) wurden die Experimente bei verschiedenen pH-Werten durchgeführt. Dabei kam es zur überraschenden Schlussfolgerung, dass sich mit dem pH-Wert die Krümmung der Dimere ändert, und damit vermutlich auch die Stabilität der Cluster.

Diese Untersuchung hat weitreichende Konsequenzen für die Strukturbiologie, denn die Forscher konnten zeigen, dass man Strukturinformationen mit hoher Auflösung an relativ großen Proteinsystemen erhalten kann. Dies eröffnet neue Perspektiven zur Strukturuntersuchung von einer Vielzahl von Systemen, die bislang nicht zugänglich waren, wie zum Beispiel Proteinkomplexe des Zytoskeletts oder Membranproteine.

Das FMP wird diese Methoden im Rahmen seiner Beteiligung an europäischen Infrastrukturnetzwerken (Bio-NMR, INSTRUCT) anderen Forschern zugänglich machen.

Die Kernspinresonanzspektroskopie (NMR) ist eine Methode, mit der die räumliche Struktur von Proteinen bestimmt werden kann. Die Struktur von AlphaB-Kristallin war bislang nur für kleine „Domänen“, einzelne Teile der Aminosäurekette, darstellbar. Mit einer speziellen Technik der NMR-Spektroskopie, bei der die untersuchte Proteinprobe sehr schnell um eine bestimmte Achse in einem Magnetfeld gedreht wird, der sogenannten „Magic-Angle-Spinning-NMR-Spektroskopie“ (MAS-NMR) konnte nun die Struktur des vollständigen Proteins gezeigt werden.

Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H. Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol. 2010 Sep;17(9):1037-42.

Kontakt
Leibniz-Institut für Molekulare Pharmakologie
Silke Oßwald, Presse- und Öffentlichkeitsarbeit
Tel. (030) 94 793-104
E-Mail: osswald@fmp-berlin.de

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.ncbi.nlm.nih.gov/pubmed/20802487

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie