Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Polymere sollen mobile DNA-Analysen ermöglichen

17.06.2011
BMBF fördert anwendungsorientierte Forschungsprojekte der Universität Jena

Ist es Schweinegrippe, Vogelgrippe oder doch ein „herkömmlicher“ Grippevirus? Wollen Ärzte heute bestimmen, an welchem Influenzatypus ein Patient erkrankt ist, müssen Blutproben in einem Labor untersucht werden. Dabei geht wichtige Zeit verloren, die für die Behandlung oder sogar für eventuelle Quarantänemaßnahmen notwendig wäre. In naher Zukunft sollen solche Fragen direkt vor Ort beantwortet werden können.

Ein Netzwerk aus 15 Thüringer Unternehmen und fünf Thüringer Forschungseinrichtungen unter Koordination der Analytik Jena AG arbeitet u. a. daran im Wachstumskern „Bioanalytik und Oberflächen zur Integration in Systemen“ (BASIS) – unterstützt durch den Projektträger Jülich sowie die Landesentwicklungsgesellschaft Thüringen. Ziel des Verbundes, welcher seit 2009 besteht, ist es, spezielle Polymer-Beschichtungen aus sogenannten „Hydrogelen“ für sehr unterschiedliche Anwendungsfelder zu entwickeln. Federführend sind Unternehmen aus den Marktbereichen Messtechnik für biologische Systeme, mobile Analytik und Implantologie.

Nach erfolgreicher Begutachtung des Verbundes wird BASIS als Innovativer regionaler Wachstumskern im Förderprogramm „Unternehmen Region“ durch das Bundesministerium für Forschung und Bildung (BMBF) seit 1. Juni mit insgesamt 9,1 Millionen Euro für die nächsten drei Jahre gefördert. Die Friedrich-Schiller-Universität Jena (FSU), die mit zwei Forschergruppen am Verbundprojekt beteiligt ist, erhält davon insgesamt 1,19 Millionen Euro.

Die Problemlösungsplattform kann in drei Anwendungsgebieten zum Einsatz kommen: Einerseits soll eine mobile Analytik von DNA entwickelt werden. Andererseits wollen die Forscher neue Beschichtungen für Messsysteme herstellen, die im Wasser eingesetzt werden und auf deren Sensoroberfläche sich keine Organismen anlagern können. Drittens sollen in den nächsten drei Jahren Gelenk- und Zahnimplantate mit antibakterieller Beschichtung entstehen.

„In allen drei Anwendungsbereichen setzen wir auf die Beschichtung mit sogenannten Hydrogelen“, sagt PD Dr. Michael Gottschaldt vom Institut für Organische Chemie und Makromolekulare Chemie der Universität Jena. „Das sind Wasser enthaltende aber wasserunlösliche Polymere, die durch ihre hydrophilen Eigenschaften aufquellen und dadurch eine abweisende Oberfläche bilden“, erklärt der Jenaer Chemiker, der zur beteiligten Forschergruppe um Prof. Dr. Ulrich S. Schubert gehört. Die Wissenschaftler der Universität Jena nutzen zur Synthese der Hydrogele vor allem spezielle Polyethylenoxid- und Poly(2-Oxazolin)-Polymere für ihre Versuche, die optimale Beschichtung für die jeweilige Anwendung zu finden. „Die Polymere werden zusätzlich miteinander vernetzt, so dass eine geschlossene Schicht entsteht“, erklärt Michael Gottschaldt. „Wie diese Beschichtungen für die unterschiedlichen Anwendungen allerdings im Einzelnen zusammengesetzt sein müssen, wollen wir im Lauf des Forschungsprojektes herausfinden.“

Vielfältige Kooperationsmöglichkeiten und Methoden stehen den Wissenschaftlern dabei innerhalb des 2010 gegründeten Zentrums der Universität, dem „Jena Center for Soft Matter“ (JCSM), zur Verfügung. Für den DNA-Nachweis etwa muss in die Beschichtung des Sensors ein Material integriert werden, das Nukleinsäuren bindet. Zur Überprüfung der verschiedenen Polymerproben drucken die Chemiker sie mit einem Tintenstrahldrucker auf Glasträger und nehmen sie unter die Lupe bzw. unter das Mikroskop.

Mit einem anderen Druckverfahren arbeitet auch Dr. Sergiy Zankovych aus dem Team von Prof. Dr. Klaus D. Jandt. Die Wissenschaftler vom Institut für Materialwissenschaft und Werkstofftechnologie (IMT) der Universität Jena wenden u. a. das Micro-Contact-Printing-Verfahren an, um die von den Chemikern entwickelten Beschichtungen auf den jeweiligen Sensoren zu strukturieren. Dadurch können sie deren Wirkungsweise verbessern und genau auf die jeweilige Anwendung zuschneiden. Natürlich müssen auch sie die verwendeten Materialien genauestens untersuchen, um Fertigungstechniken für die industrielle Herstellung zu entwickeln. Im BASIS-Projekt entwickelt das IMT physikalische Strukturierungsmethoden von Hydrogelen für die Anwendung in der mobilen Analytik. „Das BASIS-Projekt ist ein ausgezeichnetes Beispiel, wie sich Grundlagenforschung in Thüringen auch für die Thüringer Industrie auszahlt“ sagt Prof. Jandt. „BASIS ist aus grundlagenorientierten Forschungsprojekten – Grenzflächenfunktionalisierung, 3D-Biointerfaces – hervorgegangen, die in langfristiger Zusammenarbeit u. a. vom Institut für Bioanalytik Heiligenstadt, Innovent Jena, dem Lehrstuhl für Biomechatronik der TU Ilmenau und dem Lehrstuhl für Materialwissenschaft der FSU Jena durchgeführt wurden“. Die Beteiligung der Industrie an diesen Vorläufer-Projekten durch einen Beirat hat dazu beigetragen, Grundlagenforschung in industriegetriebene anwendungsorientierte Forschung umzusetzen.

Kontakt:
PD Dr. Michael Gottschaldt / Prof. Dr. Ulrich S. Schubert
Institut für Organische Chemie und Makromolekulare Chemie der Universität Jena
Humboldtstraße 10, 07743 Jena
Tel.: 03641 / 948222 oder 948201
E-Mail: michael.gottschaldt[at]uni-jena.de / info[at]schubert-group.de
Prof. Dr. Klaus D. Jandt
Institut für Materialwissenschaft und Werkstofftechnologie der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730, E-Mail: k.jandt[at]uni-jena.de

Sebastian Hollstein | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zellen auf Wanderschaft: Falten in der Zellmembran liefern Material für nötige Auswölbungen
23.11.2017 | Westfälische Wilhelms-Universität Münster

nachricht Neues Verfahren zum Nachweis eines Tumormarkers in bösartigen Lymphomen
23.11.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung