Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Methode visualisiert die Sprache von Nervenzellen

17.12.2015

Dr. Gáspár Jékely und sein Team vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen haben siGOLD entwickelt, ein Verfahren, das eine dreidimensionale Rekonstruktion verschiedener Nervenzellen und ihrer Kommunikation im Zellverbund ermöglicht. Goldpartikel, die an Antikörper gekoppelt sind, färben neuronale Signalmoleküle, die nur in bestimmten Nervenzelltypen vorkommen. siGOLD kombiniert diese molekularen Informationen mit hochauflösenden Bildern aus der Elektronenmikroskopie, um besser zu verstehen, wie Nervenzellen vernetzt sind.

Wissenschaftler versuchen schon lange zu verstehen, wie das Nervensystem funktioniert. Dazu müssen sie wissen, wie einzelne Nervenzellen miteinander verbunden sind. Eine Möglichkeit besteht darin, einen neuronalen Schaltplan zu erstellen, das so genannte Konnektom.


Elektronenmikroskopbild einer Platynereislarve. Von einer solchen Larve wurden 5.000 Gewebeschnitte angefertigt und mittels siGOLD analysiert.

Réza Shahidi /Max-Planck-Institut für Entwicklungsbiologie


Rekonstruierte Neuronen in einer Platynereislarve.Die Neuropeptide in diesen Zellen wurden mit siGOLD identifiziert. Jede Farbe repräsentiert ein Neuropeptid.

Réza Shahidi /Max-Planck-Institut für Entwicklungsbiologie

Ein Konnektom ähnelt einem elektrischen Schaltplan und enthält Informationen über die Verbindungen von Neuronen (Axone und Dendriten) und wie diese über Synapsen miteinander in Verbindung stehen. Nerven kommunizieren nicht nur über elektrische Signale, sondern auch über Signalmoleküle, so genannte Neuropeptide und Neurotransmitter, die von einer Nervenzelle zur anderen übertragen werden. Die Signalmoleküle werden von verschiedenartigen Neuronen produziert und bestimmen, wie die Nervenzellen einander beeinflussen.

Um die Neuropeptide direkt den entsprechenden Neuronen im Konnektom zuordnen zu können, haben Jékely und sein Team eine neue, hochauflösende und schnelle Methode entwickelt. Um ganze neuronale Schaltkreise zu rekonstruieren, müssen sehr dünne Gewebeschnitte des Nervengewebes im hochauflösenden Elektronenmikroskop (EM) dargestellt werden. Die Kombination der Einzelschnitte erlaubt, den Neuronen durch die Schnitte hindurch zu folgen.

Die Wissenschaftler haben kleine Neuropeptide identifiziert, die sich für die EM eignen. Diese Neuropeptide kommen im ganzen Nervensystem vor, wobei jedes charakteristisch für eine bestimmte Art von Neuronen ist. Die Forscher synthetisierten Antikörper, die gezielt nur ein Neuropeptid erkennen. Diese Antikörper sind mit Goldpartikel gekoppelt, die die Neuropeptide als schwarze Punkte in den EM-Schnitten sichtbar machen.

Die Wissenschaftler färbten verschiedene Schnitte mit unterschiedlichen Antikörpern, um verschiedene Neurone zu markieren. Die neue Methode haben die Forscher siGOLD (kurz für „serial-multiplex Immunogold“) getauft. siGOLD erlaubt die vollständige dreidimensionale Rekonstruktion von Nervenzellen und ihren Zellverbänden

Jékelys Gruppe arbeitet mit winzigen Larven des marinen Plancktons Platynereis dumerilii, einer Borstenwurm-Art. „Die Größe spielt eine wichtige Rolle“, so Jékely, „Platynereis ist ungefähr 12.000 mal kleiner als ein Mäusehirn, sodass wir das neuronale Netzwerk der Larve durch serielle EM sehr viel schneller rekonstruieren können“.

Neuropeptide sind in Tieren weit verbreitet und wichtig für die Funktion des Nervensystems. Daher ist siGOLD auch für andere Organismen eine geeignete Methode. “Wir sind zuversichtlich, dass das siGOLD-Verfahren auch bei anderen Organismen anwendbar ist”, sagt Reza Shahidi, Erstautor der Studie. „Viele Neuropeptide der Platynereis-Larve, wie zum Beispiel Enkephalin, kommen auch in den Nervensystemen anderer Organismen vor.”
siGOLD macht es möglich, dass hochauflösende EM-Bilder und die Information, mit welchen Signalmolekülen einzelne Nervenzellen kommunizieren, verknüpft werden.

Zur Methode
Um zu verstehen, wie das Nervensystem funktioniert, brauchen Wissenschaftler nicht nur genaue Kenntnisse der Anatomie der Nervenverbindungen, sondern müssen auch wissen, welche Moleküle von jeder Nervenzelle eines Konnektoms ausgeschüttet werden. Synapsen, also die Verbindungsstellen zwischen zwei Nervenzellen, liegen im Nanometerbereich. Mittels hochauflösender Elektronenmikroskopie kann man solche Nervenverbindungen erkennen.

Für die EM muss das Nervengewebe fixiert und in Plastik-Harz eingebettet werden. Dieses wird mit einer Diamantklinge in sehr dünne, meist nur 40 nm breite Scheiben geschnitten. Von jedem Schnitt wird dann ein sehr hoch aufgelöstes Bild aufgenommen, in dem man alle Membranen und Synapsen erkennen kann. Kombiniert man später die Schnitte, kann man den Nervenzellen durch alle Schnitte hindurch folgen und so eine 3D-Rekonstruktion des gesamten neuronalen Schaltplans erstellen. Réza Shahidi, Erstautor der Studie, hat 5.000 einzelne Schnitte einer kompletten Larve des marinen Borstenwurms Platynereis dumerilii analysiert. Bis zu diesem Zeitpunkt wissen die Forscher noch nicht, mit welchen Signalmolekülen die verbundenen Nervenzellen kommunizieren.

Der Nachteil bisheriger Verfahren, mit denen Neuropeptide sichtbar gemacht werden können, liegt darin, dass die Auflösung oft unzureichend ist. Außerdem sind für die Expression von bestimmten Markern gentechnische Methoden nötig. Dadurch können nur wenige unterschiedliche Marker eines einzelnen Organismus analysiert werden.

Jékely und seine Arbeitsgruppe identifizierten eine Reihe von Neuropeptiden, die die Fixierung und Aufbereitung für die Elektronenmikroskopie unbeschadet überstehen. Diese Antikörper sind mit winzigen Goldpartikeln verbunden, die das Anfärben einzelner Nervenzellen erst ermöglichen. Jékely und sein Team haben 11 unterschiedliche Antikörper verwendet und konnten so über 80 verschiedene Nervenzellen rekonstruieren.

Originalpublikation:
Réza Shahidi, Elizabeth A. Williams, Markus Conzelmann, Albina Asadulina, Csaba Verasztó, Sanja Jasek, Luis A. Bezares-Calderón and Gáspár Jékely: A Serial Multiplex Immunogold Labeling Method for Identifying Peptidergic Neurons in Connectomes. Veröffentlicht December 15, 2015
Cite as eLife 2015;10.7554/eLife.11147
DOI: http://dx.doi.org/10.7554/eLife.11147
http://elifesciences.org/content/early/2015/12/15/eLife.11147

Ansprechpartner:
Gáspár Jékely
Max-Planck-Institut für Entwicklungsbiologie
Tel.: 07071 601-1310
E-Mail: gaspar.jekely@tuebingen.mpg.de

Nadja Winter (Pressereferentin)
Tel.: 07071 601-444
Mail: presse-eb@tuebingen.mpg.de

Über uns:
Das Max-Planck-Institut für Entwicklungsbiologie betreibt Grundlagenforschung auf den Gebieten der Biochemie, Molekularbiologie, Genetik sowie Zell- und Evolutionsbiologie. Es beschäftigt rund 360 Mitarbeiterinnen und Mitarbeiter und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für Entwicklungsbiologie ist eines der 83 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Der Max-Planck-Campus Tübingen beherbergt die Max-Planck-Institute für Entwicklungsbiologie, biologische Kybernetik und Intelligente Systeme/Standort Tübingen sowie das Friedrich-Miescher-Laboratorium. Insgesamt arbeiten und forschen rund 900 Personen auf dem Campus.

Weitere Informationen:

http://elifesciences.org/content/early/2015/12/15/eLife.11147

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
21.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics