Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Membran-Synthesewege in Bakterien entdeckt

13.06.2014

Biologen der Ruhr-Universität Bochum (RUB) haben neue Mechanismen entdeckt, mit denen Bakterien Lipide, also Fettmoleküle, für die Zellmembran herstellen. Die Mechanismen sind eine Kombination aus bereits bekannten bakteriellen Synthesewegen und solchen, die in höheren Lebewesen vorkommen. Damit widerlegt das Team um Prof. Dr. Franz Narberhaus und Dr. Roman Moser die lange gehegte Theorie, dass Bakterien und höhere Lebewesen Lipide grundsätzlich unterschiedlich produzieren. Die Ergebnisse sind in der Zeitschrift „Molecular Microbiology” veröffentlicht.


Xanthomonas campestris

© RUB, Bild: Moser

Potenzial für die Pharmaindustrie

Viele Medikamente werden mit Lipiden ummantelt, weil der Körper sie so leichter aufnimmt. Die Lipide zu synthetisieren ist jedoch oft aufwendig und teuer. Enzyme mit neuen Eigenschaften könnten den Produktionsaufwand verringern und die Kosten senken. Die RUB-Forscher vom Lehrstuhl Biologie der Mikroorganismen haben nun Enzyme entdeckt, die eine Reihe von unterschiedlichen Lipiden erzeugen können. „Die Entdeckung solcher Biosynthesewege und ihre biotechnologische Optimierung birgt großes Potenzial für die industrielle Lipidproduktion“, sagt Roman Moser.

Enzym kann mehrere Lipide herstellen

Die Biologen untersuchten, wie das Bakterium Xanthomonas campestris, ein Pflanzenschädling, verschiedene Lipide herstellt. Eines der häufigsten bakteriellen Lipide, Phosphatidylethanolamin, produziert das Bakterium auf verschiedenen Wegen: Einer davon ist schon lange bekannt; ein weiterer war bisher völlig unbekannt. Das Enzym, das im neu entdeckten Syntheseweg eine entscheidende Rolle spielt, kann auch ein strukturell völlig anderes Lipid synthetisieren, das Cardiolipin. „Möglicherweise trägt dieses vielseitige Enzym in der natürlichen Umgebung dazu bei, dass Xanthomonas einen Vorteil gegenüber anderen Bakterien hat“, spekuliert Franz Narberhaus.

Nicht nur Modellorganismen untersuchen

Xanthomonas kann auch das für Pflanzen und Tiere typische Lipid Lecithin erzeugen. Nur wenige Bakterien sind dazu in der Lage. Das RUB-Team fand heraus, dass Xanthomonas dafür keinen der beiden bislang bekannten bakteriellen Synthesewege nutzt. „Um die bekannten Theorien zur Biosynthese der Zellmembran auf den Prüfstand zu stellen, wird es sich in Zukunft lohnen, die Vorgänge nicht nur in den üblichen Modellorganismen zu untersuchen“, sagt Prof. Narberhaus.

Titelaufnahmen

R. Moser, M. Aktas, F. Narberhaus (2014): Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeast-like acylation pathway, Molecular Microbiology, DOI: 10.1111/mmi.12492

R. Moser, M. Aktas, C. Fritz, F. Narberhaus (2014): Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria, Molecular Microbiology, DOI: 10.1111/mmi.12603

Weitere Informationen

Prof. Dr. Franz Narberhaus, Lehrstuhl Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23100, E-Mail: franz.narberhaus@rub.de

Dr. Roman Moser, Lehrstuhl Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-25624, E-Mail: roman.moser@gmx.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie