Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Materialchemie für Hochleistungsbatterien

19.09.2017

Chemiker der TU Berlin um Prof. Dr. Peter Strasser entwickeln neuen Typ von Elektrodenmaterialien für neuartige, sichere Batterien, die auf Aluminium und Magnesium statt Lithium beruhen

Wieder aufladbare kleine Lithium-Ionen-Batterien begegnen uns auf Schritt und Tritt: Im Handy, in Kameras, Radios und nahezu allen portablen elektrischen Geräten. Lithium ist einerseits ein sehr reaktives Material und damit gut geeignet für Batterien, da man eine hohe Spannung erzeugen kann. Andererseits liegt in dieser Eigenschaft aber auch die Gefahr: Die Batterien müssen vollkommen luftdicht abgedichtet sein, damit es nicht zu explosiven Zwischenfällen kommt.


Prof. Dr. Peter Strasser (r.) mit seinem Doktoranden Toshinari Koketsu beim Zusammenbau von Batterien

© TU Berlin/PR/Christian Kielmann

„Für kleine portable Anwendungen sind Lithium-Ionen-Batterien heute noch erste Wahl“, weiß Prof. Dr. Peter Strasser, „aber die Sicherheitsrisiken von Lithium-Ionen-Batterien bei großen Batteriespeichern, wie wir sie für eine Energiewende hin zu regenerativen Energien benötigen, machen ihre langfristige Verwendung zu einer enormen Herausforderung.“

Schon seit längerem arbeiten Wissenschaftlerinnen und Wissenschaftler deshalb an Alternativen, die auf den Metallen Magnesium oder Aluminium beruhen. „Diese Metalle sind preiswerter und können sicherer an der Luft gelagert werden – diese größere Sicherheit bezahlt man allerdings mit einer geringeren Spannung. Dafür stellen diese Ionen nicht wie Lithium nur eine, sondern zwei beziehungsweise drei positive Ladungen zur Verfügung und erlauben daher eine viel dichtere Speicherung von elektrischer Ladung - was gerade für große kompakte Batteriespeicher sehr wichtig ist“, so Peter Strasser.

Das Problem: Die zwei- und dreiwertig geladenen Ionen ließen sich bisher sehr viel schlechter so in ein Wirtsmaterial (Elektrodenmaterial) einlagern, dass sie anschließend reversibel zwischen den Elektroden ausgetauscht werden können. „Meinem Mitarbeiter Dr. Toshinari Koketsu ist es jetzt gelungen, diese Ionen reversibel in eine chemisch modifizierte Form des weißen Farbpigments Titanoxid einzulagern. Das Titanoxid wurde dabei zunächst von unseren Kooperationspartnern an der Pariser Universität Sorbonne mit Fluorid-Ionen dotiert. Das bedeutet, dass Fluorid-Ionen in der Gitterstruktur des Titanoxids einen Teil der Sauerstoff-Ionen ersetzen, dabei einige der positiv geladenen Titan-Ionen ausstoßen und so eine Art ‚Loch’ oder Fehlstelle in dem Gitter produzieren. Es zeigt sich, dass diese Fehlstellen, ideale Einlagerungsstellen für positiv geladene Magnesium- oder Aluminium-Ionen sind.“

In mehreren Versuchsreihen konnten die Wissenschaftler jetzt erstmalig beweisen, dass die reversible Einlagerung der Aluminium- und Magnesium-Ionen über mehrere hundert Zyklen stabil funktioniert und dabei hohe Ladungskapazitäten zeigt. „Damit konnten wir zeigen, dass Fluorid-dotierte Oxidmaterialien mit speziellen Fehlstellen tatsächlich eine grundlegend neue Batteriechemie mit Magnesium- und Aluminium-Ionen ermöglichen, die von fundamentaler wie praktischer Bedeutung sein wird“, so Peter Strasser.

Eine Technik von übermorgen: „Wir werden auch zukünftig noch verschiedene Batterietypen nutzen. Im Moment ist die Lithium-Ionen-Batterie die preiswerteste und beste Methode für viele Anwendungen. Parallel dazu arbeitet die Wissenschaft an sogenannten Lithium-Schwefel-Batterien, die auch von der Automobilindustrie mit Interesse verfolgt werden. Die Aluminium-/Magnesium-Ionen-Batterie ist eher eine Technik von übermorgen, für Anwendungen die zum Beispiel sehr auf Sicherheit fokussiert sind.“

[1] Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2
Toshinari Koketsu, Jiwei Ma, Benjamin J. Morgan, Monique Body, Christophe Legein, Walid Dachraoui, Mattia Giannini, Arnaud Demortière, Mathieu Salanne, François Dardoize, Henri Groult, Olaf J. Borkiewicz, Karena W. Chapman, Peter Strasser & Damien Dambournet;
Nature Materials (2017), DOI: 10.1038/nmat4976

Fotos zum Download: www.tu-berlin.de/?189158

Weitere Informationen erteilt Ihnen gerne:
Prof. Dr. Peter Strasser
TU Berlin
Fachgebiet Elektrochemische Katalyse und Materialien
Tel.: 030 314-29542
E-Mail: pstrasser@tu-berlin.de

Weitere Informationen:

http://www.tu-berlin.de/?189158

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz