Neue Inhibitoren hemmen Influenzaviren

Elektronenmikroskopie-Aufnahmen zeigen die Bindung der neuen Inhibitoren an Influenza-Viren Kai Ludwig, Maria Glanz

Influenzaviren sind tückisch. Beim Einatmen gelangen sie in unsere Lunge und greifen dort die Lungenepithelzellen an, der erste und entscheidende Schritt bei einer Infektion durch diese Viren. Der Angriff ist möglich, weil die Viren an bestimmte Wirtszellen in der Lunge binden. Genau diesen Schritt wollen Wissenschaftler vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) und der Humboldt-Universität (HU) unterbinden.

Gemeinsam mit Kollegen von der Charité, dem Deutschen Rheuma-Forschungszentrum Berlin (DRFZ) und der Freien Universität Berlin (FU) haben sich die Forscher deshalb auf die Suche nach einem Wirkstoff gemacht, der Influenzaviren hemmt, selbst wenn die Infektion schon ausgebrochen ist. Bislang gibt es keine antivirale Therapie, die dazu in der Lage wäre. Doch nach mehr als zweieinhalb Jahren institutsübergreifender Forschung scheint das Eis in der Grundlagenforschung gebrochen zu sein.

„Wir haben den Proof-of-principle erbracht, dass sich mit unserem Ansatz Influenzaviren hervorragend hemmen lassen“, sagt Prof. Dr. Christian Hackenberger, Bereichsleiter am FMP und Professor für Chemische Biologie an der Humboldt Universität. „Damit haben wir ganz neue Türen für klinische Experimente aufgestoßen.“

Bindungsstellen der Natur abgekupfert

Bei der Wirkstoffentwicklung haben die Forscher auf sogenannte multivalente Inhibitoren zurückgegriffen. In diesem Fall handelte es sich um Nanopartikel, die auf ihrer Oberfläche zahlreiche Liganden tragen, die ganz spezifisch an das Grippevirus binden. Durch die Vielzahl an Bindungen ist die Chance wesentlich größer, dass das Virus erkannt und Schachmatt gesetzt werden kann. Der multivalente Ansatz mit Zuckerliganden ist in der Literatur gut beschrieben. “Durch eine neue Strategie, in der wir Peptide als Liganden verwenden, konnten wir neue Inhibitoren herstellen, die für die chemische Synthese viel Spielraum bieten“, sagt Maria Glanz, Chemikerin am FMP.

Bei Grippe bildet das Immunsystem Antikörper gegen das Virus, ein Vorgang der auch jährlich bei einer Grippeschutzimpfung ausgenutzt wird. In Vorarbeiten hatten die Forscher die Regionen der Antikörper identifiziert, die das Virus erkennen. Die entscheidenden Stellen wurden anschließend herausgeschnitten und am FMP von Maria Glanz synthetisiert. Die der Natur nachempfundenen Peptidsequenzen wurden dann als Liganden auf den Inhibitor gesetzt, und zwar in enormer Stückzahl. „Dadurch ist die Affinität zum Virus wesentlich größer, also bindungsstärker“, betont Prof. Dr. Andreas Herrmann, Leiter des Bereichs Molekulare Biophysik an der HU. Dies habe sich auch in den Experimenten bestätigt: „In-vitro haben unsere multivalenten Peptid-Nanopartikel-Konjugate richtig gut gegriffen.“

Proof-of-principle an humanen Zellkulturen erbracht

Die Experimente mit dem neuen Inhibitor wurden an Modellmembranen sowie an humanen Zellkulturen erfolgreich durchgeführt. Auch im Mausmodell funktionierte die Inhibition der Influenzaviren, was sich unter anderem am Verlust bzw. Halten des Körpergewichts messen ließ. Allerdings ging die antivirale Wirkung hier nach vier Tagen zurück, da die Tiere den Wirkstoff nur einziges Mal einmal verabreicht bekamen.

„Wir haben die Tiere nur einmal behandelt, um ihnen Stress zu ersparen“, erläutert Daniel Lauster, Biologe am HU-Institut für Molekulare Biophysik. „Eine mehrmalige Gabe des Wirkstoffs, so wie es bei anderen Medikamenten üblich ist, hätte garantiert länger anhaltende Effekte gehabt.“
Im nächsten Schritt wollen die Forscher das Konzept für weitere Anwendungen optimieren. Der Forschung steht aber jetzt schon ein völlig neues Inhibitoren-Design zur Verfügung, dass künftig für die Entwicklung neuer Bindungsinhibitoren verwendet werden kann.

Neue Klasse von Molekülen enorm anpassungsfähig

Nach Auskunft der Forscher kann sich die neue Klasse von Molekülen viel leichter an die natürlichen Varianten des Virus anpassen, da sie auf unterschiedlichen Designs beruhen. Das ist wichtig, weil sich Virusproteine strukturell verändern können. Vorherige Systeme waren dagegen immer nur gegen eine Bindestelle am Virus gerichtet. „Wir haben jetzt wesentlich mehr Möglichkeiten und können unser System viel leichter adaptieren, etwa wenn Resistenzen und Mutanten entstehen“, erklärt Daniel Lauster. Weitere Vorteile seien, dass sich das neue Inhibitoren-Design auch für andere Peptidsysteme eigne und es sehr einfach zu synthetisieren sei.

„Das wirklich Neue an dem Konzept ist die Kombination aus multivalentem Inhibitor und sehr kurzen Antikörperfragmenten“, fasst Christian Hackenberger die Ergebnisse zusammen. Der Beweis sei zwar an Influenza A Viren erbracht worden, lasse sich aber auch auf andere Virusinfektionen übertragen. Biophysiker Andreas Herrmann, der auch Sprecher des erfolgreichen IRI Life Sciences an der HU ist, ergänzt: „Das Projekt zeigt einmal mehr, wie gut wir in Berlin in der Grundlagenforschung aufgestellt sind und welche Früchte eine Zusammenarbeit von universitären und außeruniversitären Einrichtungen tragen kann.“

An dem Forschungsprojekt waren fünf große Berliner Forschungseinrichtungen aus dem Bereich Life Science beteiligt: Das Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), das Institut für Biologie, Molekulare Biophysik, IRI Life Sciences der Humboldt-Universität zu Berlin (HU), die Charité – Universitätsmedizin, das Deutsche Rheuma-Forschungszentrum Berlin (DRFZ) sowie das Institut für Chemie und Biochemie – Organische Chemie an der Freien Universität Berlin (FU). Die Deutsche Forschungsgemeinschaft (DFG) hat das Projekt im Rahmen des Sonderforschungsbereichs SFB 765 „Multivalenzen als chemisches Organisations- und Wirkprinzip: Neue Architekturen, Funktionen und Anwendungen“ gefördert.

Die Ergebnisse der Studie sind soeben im hochrenommierten Fachmagazin „Angewandte Chemie“ erschienen: doi.org/10.1002/ange.201702005 (Deutsche Ausgabe)

Kontakt:
Prof. Dr. Christian Hackenberger
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
hackenbe (at) fmp-berlin.de
Tel.: 0049 30 94793-181

Silke Oßwald
Öffentlichkeitsarbeit
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
osswald (at) fmp-berlin.de
Tel.: 0049 30 94793-104

Das Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Media Contact

Silke Oßwald idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.fmp-berlin.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer