Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Inhibitoren hemmen Influenzaviren

03.05.2017

Influenzaviren können für den Menschen gefährlich werden. Darum versuchen Wissenschaftler die Virusinfektion zu stoppen. Multivalente Inhibitoren, die mit Hilfe zahlreicher Liganden an die Virusoberfläche binden, scheinen dabei besonders vielversprechend zu sein. Wissenschaftler vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), der Humboldt-Universität zu Berlin (HU), Charité, dem Deutschen Rheuma-Forschungszentrum Berlin (DRFZ) und der Freien Universität Berlin (FU) haben jetzt erstmals den multivalenten Ansatz mit Peptiden aus Antikörpern kombiniert. In vitro und in vivo Experimente zeigten, dass sich Influenza A Viren zuverlässig mit dem neuen Wirkstoff hemmen lassen.

Influenzaviren sind tückisch. Beim Einatmen gelangen sie in unsere Lunge und greifen dort die Lungenepithelzellen an, der erste und entscheidende Schritt bei einer Infektion durch diese Viren. Der Angriff ist möglich, weil die Viren an bestimmte Wirtszellen in der Lunge binden. Genau diesen Schritt wollen Wissenschaftler vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) und der Humboldt-Universität (HU) unterbinden.


Elektronenmikroskopie-Aufnahmen zeigen die Bindung der neuen Inhibitoren an Influenza-Viren

Kai Ludwig, Maria Glanz

Gemeinsam mit Kollegen von der Charité, dem Deutschen Rheuma-Forschungszentrum Berlin (DRFZ) und der Freien Universität Berlin (FU) haben sich die Forscher deshalb auf die Suche nach einem Wirkstoff gemacht, der Influenzaviren hemmt, selbst wenn die Infektion schon ausgebrochen ist. Bislang gibt es keine antivirale Therapie, die dazu in der Lage wäre. Doch nach mehr als zweieinhalb Jahren institutsübergreifender Forschung scheint das Eis in der Grundlagenforschung gebrochen zu sein.

„Wir haben den Proof-of-principle erbracht, dass sich mit unserem Ansatz Influenzaviren hervorragend hemmen lassen“, sagt Prof. Dr. Christian Hackenberger, Bereichsleiter am FMP und Professor für Chemische Biologie an der Humboldt Universität. „Damit haben wir ganz neue Türen für klinische Experimente aufgestoßen.“

Bindungsstellen der Natur abgekupfert

Bei der Wirkstoffentwicklung haben die Forscher auf sogenannte multivalente Inhibitoren zurückgegriffen. In diesem Fall handelte es sich um Nanopartikel, die auf ihrer Oberfläche zahlreiche Liganden tragen, die ganz spezifisch an das Grippevirus binden. Durch die Vielzahl an Bindungen ist die Chance wesentlich größer, dass das Virus erkannt und Schachmatt gesetzt werden kann. Der multivalente Ansatz mit Zuckerliganden ist in der Literatur gut beschrieben. “Durch eine neue Strategie, in der wir Peptide als Liganden verwenden, konnten wir neue Inhibitoren herstellen, die für die chemische Synthese viel Spielraum bieten“, sagt Maria Glanz, Chemikerin am FMP.

Bei Grippe bildet das Immunsystem Antikörper gegen das Virus, ein Vorgang der auch jährlich bei einer Grippeschutzimpfung ausgenutzt wird. In Vorarbeiten hatten die Forscher die Regionen der Antikörper identifiziert, die das Virus erkennen. Die entscheidenden Stellen wurden anschließend herausgeschnitten und am FMP von Maria Glanz synthetisiert. Die der Natur nachempfundenen Peptidsequenzen wurden dann als Liganden auf den Inhibitor gesetzt, und zwar in enormer Stückzahl. „Dadurch ist die Affinität zum Virus wesentlich größer, also bindungsstärker“, betont Prof. Dr. Andreas Herrmann, Leiter des Bereichs Molekulare Biophysik an der HU. Dies habe sich auch in den Experimenten bestätigt: „In-vitro haben unsere multivalenten Peptid-Nanopartikel-Konjugate richtig gut gegriffen.“

Proof-of-principle an humanen Zellkulturen erbracht

Die Experimente mit dem neuen Inhibitor wurden an Modellmembranen sowie an humanen Zellkulturen erfolgreich durchgeführt. Auch im Mausmodell funktionierte die Inhibition der Influenzaviren, was sich unter anderem am Verlust bzw. Halten des Körpergewichts messen ließ. Allerdings ging die antivirale Wirkung hier nach vier Tagen zurück, da die Tiere den Wirkstoff nur einziges Mal einmal verabreicht bekamen.

„Wir haben die Tiere nur einmal behandelt, um ihnen Stress zu ersparen“, erläutert Daniel Lauster, Biologe am HU-Institut für Molekulare Biophysik. „Eine mehrmalige Gabe des Wirkstoffs, so wie es bei anderen Medikamenten üblich ist, hätte garantiert länger anhaltende Effekte gehabt.“
Im nächsten Schritt wollen die Forscher das Konzept für weitere Anwendungen optimieren. Der Forschung steht aber jetzt schon ein völlig neues Inhibitoren-Design zur Verfügung, dass künftig für die Entwicklung neuer Bindungsinhibitoren verwendet werden kann.

Neue Klasse von Molekülen enorm anpassungsfähig

Nach Auskunft der Forscher kann sich die neue Klasse von Molekülen viel leichter an die natürlichen Varianten des Virus anpassen, da sie auf unterschiedlichen Designs beruhen. Das ist wichtig, weil sich Virusproteine strukturell verändern können. Vorherige Systeme waren dagegen immer nur gegen eine Bindestelle am Virus gerichtet. „Wir haben jetzt wesentlich mehr Möglichkeiten und können unser System viel leichter adaptieren, etwa wenn Resistenzen und Mutanten entstehen“, erklärt Daniel Lauster. Weitere Vorteile seien, dass sich das neue Inhibitoren-Design auch für andere Peptidsysteme eigne und es sehr einfach zu synthetisieren sei.

„Das wirklich Neue an dem Konzept ist die Kombination aus multivalentem Inhibitor und sehr kurzen Antikörperfragmenten“, fasst Christian Hackenberger die Ergebnisse zusammen. Der Beweis sei zwar an Influenza A Viren erbracht worden, lasse sich aber auch auf andere Virusinfektionen übertragen. Biophysiker Andreas Herrmann, der auch Sprecher des erfolgreichen IRI Life Sciences an der HU ist, ergänzt: „Das Projekt zeigt einmal mehr, wie gut wir in Berlin in der Grundlagenforschung aufgestellt sind und welche Früchte eine Zusammenarbeit von universitären und außeruniversitären Einrichtungen tragen kann.“

An dem Forschungsprojekt waren fünf große Berliner Forschungseinrichtungen aus dem Bereich Life Science beteiligt: Das Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), das Institut für Biologie, Molekulare Biophysik, IRI Life Sciences der Humboldt-Universität zu Berlin (HU), die Charité – Universitätsmedizin, das Deutsche Rheuma-Forschungszentrum Berlin (DRFZ) sowie das Institut für Chemie und Biochemie – Organische Chemie an der Freien Universität Berlin (FU). Die Deutsche Forschungsgemeinschaft (DFG) hat das Projekt im Rahmen des Sonderforschungsbereichs SFB 765 „Multivalenzen als chemisches Organisations- und Wirkprinzip: Neue Architekturen, Funktionen und Anwendungen“ gefördert.

Die Ergebnisse der Studie sind soeben im hochrenommierten Fachmagazin „Angewandte Chemie“ erschienen: doi.org/10.1002/ange.201702005 (Deutsche Ausgabe)

Kontakt:
Prof. Dr. Christian Hackenberger
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
hackenbe (at) fmp-berlin.de
Tel.: 0049 30 94793-181

Silke Oßwald
Öffentlichkeitsarbeit
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
osswald (at) fmp-berlin.de
Tel.: 0049 30 94793-104

Das Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Silke Oßwald | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fmp-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics