Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue genetische Ursache für Glasknochen-Krankheit entdeckt

28.02.2011
Bei der Osteogenesis imperfecta (Glasknochen-Krankheit) führen genetische Veränderungen zu einer erhöhten Knochenbrüchigkeit und in der Folge oft zu Wachstumsstörungen und Skelettfehlbildungen. Die Mehrzahl der Fälle sind auf Mutationen in bereits bekannten Genen zurückzuführen. Bei einem kleinen Teil der Patienten war die genetische Ursache bislang unbekannt.

Einer internationalen Forschergruppe unter der Leitung von Priv.-Doz. Dr. Christian Netzer vom Institut für Humangenetik der Uniklinik Köln ist es nun gelungen, bei einigen dieser Patienten das ursächliche Gen zu identifizieren.

Hierfür kam eine Methode zur umfassenden Analyse des menschlichen Genoms zum Einsatz, die derzeit weltweit die Humangenetik revolutioniert: das sogenannte Next-Generation-Sequencing. Es ermöglicht die Analyse eines Großteils aller circa 25.000 Gene in einem einzigen Experiment.

Im vorliegenden Fall wurde diese Arbeit am Radboud University Medical Center in Nijmegen geleistet (Arbeitsgruppe von Prof. Joris A. Veltman und Dr. Alexander Hoischen). Bisher mussten bei Forschungsprojekten und in der Routine-Diagnostik die in Frage kommenden Gene einzeln und nacheinander analysiert werden – ein sehr mühseliges und zeitaufwendiges Vorgehen, so dass in der Regel nur eine kleine Zahl von Genen untersucht werden konnte.

Mit der neuen Methode werden gleich zehntausende Abweichungen von der Referenzsequenz des humanen Genoms identifiziert. Die weitaus meisten hiervon haben keinen Krankheitswert, sondern sind Teil der jeweiligen genetischen Individualität eines Menschen. Die krankheitsauslösende Mutation in diesem gewaltigen Datensatz zu finden, gleicht daher zurzeit noch der sprichwörtlichen Suche nach der Stecknadel im Heuhaufen.

Die Forscher machten sich bei dieser Suche zu Nutze, dass die Eltern der Patienten eine Ehe mit einem Verwandten eingegangen waren. Die ursächliche Mutation vermuteten sie daher in den Abschnitten des Genoms, die von einem gemeinsamen Vorfahren über beide Elternteile in identischer Form an das betroffene Kind vererbt wurden. Mit einem raffinierten bioinformatischen Algorithmus kartierten die Wissenschaftler die in Frage kommenden Bereiche und suchten nur hier nach der Mutation.

Schon nach der Analyse des ersten Patienten-Genoms wurden sie fündig: Das Gen SERPINF1 zeigte in beiden Kopien eine schwerwiegende Veränderung. Anschließend fanden sie bei zwei weiteren Patienten mit Osteogenesis imperfecta andere gravierende Mutationen und konnten somit belegen, dass Veränderungen in diesem Gen mit stark erhöhter Knochenbrüchigkeit einhergehen. „Wir waren selbst überrascht, ausgerechnet ein Gen als ursächlich zu identifizieren, dass man bislang vor allem mit der Hemmung von Gefäßneubildungen in Verbindung gebracht hat: SERPINF1 kodiert für das Protein PEDF, das wegen dieser Eigenschaft sogar schon in klinischen Studien auf seine Eignung als Medikament untersucht wird“, sagt Dr. Christian Netzer.

Der Ablauf der Erkrankung könnte daher bei dieser Form der Glasknochen-Krankheit ein gänzlich anderer sein als bei den bisher bekannten Fällen. „Wir haben die Hoffnung, dass auf dem Boden dieser Erkenntnis langfristig eine individualisierte – das heißt an die molekulare Ursache angepasste – Therapie dieser Form der Glasknochen-Krankheit entwickelt werden kann. Auch wenn das vermutlich noch ein sehr weiter Weg ist“, so Netzer weiter.

Alle Patienten, bei denen der Nachweis von SERPINF1-Mutationen gelang, werden im Osteogenesis imperfecta-Zentrum der Kölner Universitäts-Kinderklinik, der größten Einrichtung dieser Art in Deutschland, vom Pädiater Dr. Oliver Semler behandelt. „Die Patienten haben alle eine schwere Form der Erkrankung. Die Familien sind froh, dass man jetzt eine greifbare Erklärung für die Krankheit hat. Außerdem kann eine Aussage darüber getroffen werden, wie wahrscheinlich es ist, dass sie weitere erkrankte Kinder bekommen könnten“, sagt Dr. Semler, der an der im renommierten American Journal of Human Genetics publizierten Untersuchung maßgeblich beteiligt war.

Publikation:

Exome Sequencing Identifies Truncating Mutations in Human SERPINF1 in Autosomal-Recessive Osteogenesis Imperfecta. Jutta Becker , Oliver Semler , Christian Gilissen , Yun Li , Hanno Jörn Bolz , Cecilia Giunta , Carsten Bergmann , Marianne Rohrbach , Friederike Koerber , Katharina Zimmermann , Petra de Vries , Brunhilde Wirth , Eckhard Schoenau , Bernd Wollnik , Joris A. Veltman , Alexander Hoischen and Christian Netzer. American Journal of Human Genetics 2011.
DOI:10.1016/j.ajhg.2011.01.015
http://www.cell.com/AJHG/abstract/S0002-9297(11)00016-4
Für Rückfragen:
Priv.-Doz. Dr. med. Christian Netzer
Institut für Humangenetik
Telefon: 0221 478-86811
E-Mail: christian.netzer@uk-koeln.de
Christoph Wanko
Pressesprecher Uniklinik Köln
Stabsabteilung Kommunikation
Telefon: 0221 478-5548
E-Mail: pressestelle@uk-koeln.de

Christoph Wanko | idw
Weitere Informationen:
http://www.uk-koeln.de
http://www.cell.com/AJHG/abstract/S0002-9297(11)00016-4

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie