Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Funktion eines DNA-Reparatursystems entdeckt

31.01.2011
Ein zelluläres Reparatursystem, von dem man bisher annahm, dass es primär für die Korrektur von DNA-Schäden zuständig ist, spielt nun auch bei der Ablesbarkeit von Genen und damit in der Embryonalentwicklung eine zentrale Rolle. Es sorgt dafür, dass in jedem Zelltyp konstant die richtigen Gene aktiv sind. Diese Entdeckung machten Forschende der Universität Basel. Ihre Forschungsergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift «Nature» publiziert.

Jede Zelle besitzt Reparatursysteme, mit denen sie Schäden an der DNA, der Trägerin der Erbinformationen, repariert und somit die genetische Information in korrekter Form erhält. Die Forschergruppe um Primo Schär, Professor für Molekulare Genetik an der Universität Basel, hat nun bei einem zellulären Reparatursystem eine Entdeckung gemacht. Statt wie bisher angenommen primär Fehler in der Basenabfolge der DNA zu beseitigen, stabilisiert es zusätzlich eine übergeordnete genetische Ebene.


Ein DNA-Reparatursystem stabilisiert Muster von chemischen Modifikationen an der DNA und an Histonproteinen und gewährleistet damit, dass in jeder Zelle konstant die richtigen Gene aktiv sind.

Ein DNA-Reparatursystem stabilisiert Muster von chemischen Modifikationen an der DNA und an Histonproteinen und gewährleistet damit, dass in jeder Zelle konstant die richtigen Gene aktiv sind.

Die Vermutung kam den Forschenden bei der Beobachtung von Mäusen, denen eine spezifische Komponente dieser Reparaturmaschine fehlte. Sie starben noch vor der Geburt, obwohl die Zellen den Defekt erwartungsgemäss hätten kompensieren müssen. Die anschliessenden Untersuchungen zeigten, dass nicht die DNA-Stabilität beeinträchtigt war, sondern die Ablesemuster der Gene in der Embryonalentwicklung falsch programmiert wurden. Im Embryonalstadium wird für jeden Zelltyp ein spezifisches Programm von Genen aktiviert, während die Mehrzahl der Gene stillgelegt werden müssen. Zu diesem Zweck wird die DNA in eine kompakte Form gebracht, in der nur die benötigten Gene ablesbar sind. Dies geschieht über Veränderungen an der chemischen Grundstruktur der DNA selbst sowie an Histonproteinen, um die die DNA aufgewickelt ist.

Wie eine Art «Lesezeichen» markieren solche Modifikationen die Gene, die gelesen werden sollen. Da diese Lesezeichen die Basenabfolge der DNA nicht verändern, jedoch Informationen bezüglich Genaktivität enthalten, die bei der Zellteilung an die Tochterzellen weiter vererbt werden, spricht man von Epigenetik.

Beim Setzen dieser Lesezeichen können jedoch Fehler auftreten, sodass ein benötigtes Gen fälschlicherweise nicht mehr abgelesen werden kann. Die Forschenden haben entdeckt, dass das DNA-Reparatursystem solche Fehler verhindert, indem es falsche Modifikationen an der DNA entfernt und Faktoren koordiniert, welche die korrekten chemischen Gruppen an den Histonen anbringen. Damit sorgt es dafür, dass in jedem Zelltyp konstant die richtigen Gene aktiv sind.

Weitere Auskünfte
Prof. Dr. Primo Schär, Universität Basel, Departement Biomedizin, Institut für Biochemie und Genetik, Mattenstrasse 28, 4058 Basel, Tel. +41 61 267 07 70, E-Mail: primo.schaer@unibas.ch
Originalbeitrag
Daniel Cortazar, Christophe Kunz, Jim Selfridge, Teresa Lettieri, Yusuke Saito, Eilidh MacDougall, Annika Wirz, David Schuermann, Angelika L. Jacobs, Fredy Siegrist, Roland Steinacher, Josef Jiricny, Adrian Bird & Primo Schär
Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability

Nature, published online before print January 30, 2011 | doi: 10.1038/nature09672

Hans Syfrig Fongione | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics