Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Forschungsprojekte im Bereich Medizinische Biodiversität und Parasitologie

12.02.2014
In Zeiten des Globalen Wandels finden zahlreiche Krankheitserreger und -überträger ihren Weg in neue Lebensräume.

Auch zeigen sich gänzlich neuartige Krankheiten und treten häufig erst mit zeitlicher Verzögerung in den Industrieländern auf. Lebensweisen, Umweltbedingungen und Wirt-Erreger-Interaktionen beeinflussen dabei die Ausbreitungsmechanismen.

Die Frankfurter Arbeitsgruppe um Prof. Dr. Sven Klimpel (Senckenberg Gesellschaft für Naturforschung, LOEWE Biodiversität und Klima Forschungszentrum und Goethe-Universität) trägt nun mit zwei neuen Projekten, einer Graduiertenschule und einem BiodivERsA-Projekt, zum Verständnis der komplexen Zusammenhänge bei.

Infektionskrankheiten sind die weltweit häufigste Todesursache: Im Jahr 2001 starben laut Schätzungen der Weltgesundheitsorganisation (WHO) ca. 14,9 Millionen Menschen daran. Dies entspricht etwa 26 % aller Todesfälle. In den Industrieländern konnten im Verlauf des 20. Jahrhunderts viele Infektionskrankheiten durch verbesserte Lebensbedingungen und Hygiene sowie den medizinischen Fortschritt zurückgedrängt werden. Seit einigen Jahrzehnten spielen hier jedoch neu oder wieder auftretende Infektionskrankheiten und durch Vektoren, also andere Organismen (z.B. blutsaugende Insekten), übertragene Krankheiten eine zunehmende Rolle. Etliche dieser Erreger wurden erst in den letzten Jahrzehnten entdeckt, wie z.B. das Humane Immundefizienz-Virus (HIV), Hanta-Viren, sowie virale Erreger hämorrhagischer Fieber, z.B. das Ebola- oder Marburg-Virus.

Die hohe Mobilität der Menschen und der weltweite Handel schaffen vielfältige Übertragungswege: Von einer einzigen Infektionsquelle ausgehend können Personen in verschiedenen Ländern infiziert werden. Die rapide globale Ausbreitung des SARS-Erregers (Severe acute respiratory syndrome) im Winter 2002/2003 ist ein aktuelles Beispiel für diese globale Bedrohung.

Vielfältige Ursachen für ein globales Problem

Das neue, erneute oder vermehrte Auftreten von Infektionskrankheiten resultiert aus einer komplexen Beziehung zwischen Umwelt, Wirt und Erreger. Relevant sind dafür neben der Globalisierung auch ökologische, landwirtschaftliche und sozioökonomische Veränderungen sowie Missstände in der Lebensmittelproduktion und Gesundheitsversorgung. Ökologische Veränderungen oder auch der Klimawandel betreffen beispielsweise die Habitate von Wirbeltieren oder Gliederfüßern (z.B. Stechmücken), welche Erreger auf den Menschen übertragen. Auch wird die Entstehung und Verbreitung neu oder wieder auftretender Infektionskrankheiten durch Veränderungen des Verhaltens des potentiellen Wirtes “Mensch“ begünstigt. Außer der Ernährung, der Freizeitaktivität und der Reisetätigkeit spielen dabei der Medikamentenkonsum und der Gebrauch von Drogen eine wichtige Rolle.

Um diesen Herausforderungen begegnen zu können, ist eine kontinuierliche Erforschung dieser Zusammenhänge und die Ausbildung qualifizierter Nachwuchswissenschaftlerinnen und -wissenschaftler essentiell. Prof. Dr. Sven Klimpel und seine Mitarbeiterinnen und Mitarbeiter der Goethe-Universität Frankfurt, des LOEWE Biodiversität und Klima Forschungszentrums (BiK-F) und der Senckenberg Gesellschaft für Naturforschung, lehren und forschen zu dieser Thematik und sind in diesem Kontext an zwei Großprojekten mit jeweils drei Jahren Laufzeit beteiligt.

Gut ausgebildeter Nachwuchs als Zukunftskapital

Die Leibniz-Gemeinschaft fördert mit einer Million Euro die Graduiertenschule International Multidisciplinary Parasitology and Vector Biology (IMPact-Vector), an der sich neben den Frankfurter Einrichtungen Leibniz-Institute in Hamburg (Bernhard Nocht Institut für Tropenmedizin, BNITM) und Berlin (Institut für Zoo- und Wildtierforschung, IZW, und Institut für Gewässerökologie und Binnenfischerei, IGB) beteiligen. Die Graduiertenschule soll dem Nachwuchsrückgang in den Fachgebieten Infektionsbiologie und Parasitologie entgegenwirken und sicherstellen, dass die dringend benötigte wissenschaftliche Expertise auch künftig zur Verfügung steht. Inhaltlich geht es um die Erforschung von Infektionsprozessen unter Einbeziehung von Vektoren und Zwischenwirten, und zwar in unterschiedlichen Öko- und Modell-Systemen. Ziel der Ausbildung ist der Erwerb spezieller Kenntnisse über parasitologische, entomologische, molekulare und epidemiologische Aspekte vektorassoziierter Infektionskrankheiten und Parasitosen.

Grenzübergreifende Forschung für grenzüberschreitende Themen

Im Rahmen der europäischen Fördermaßnahme ERA-Net BiodivERsA wird außerdem ein Verbundprojekt mit Wissenschaftlerinnen und Wissenschaftlern aus Frankreich und Österreich gefördert. Unter dem Titel „Globaler Wandel und invasive Stechmücken als Infektionskrankheitsrisiko in Europa“ stehen die Auswirkungen invasiver Stechmückenarten im Fokus. Dem Projekt stehen dafür rund 1,2 Mill. Euro zur Verfügung, mit denen die Übertragungswege von Infektionskrankheiten durch Mücken sowie die genetische Vielfalt, geographische Verbreitung und Klimatoleranz der neu in Europa auftretenden Mückenarten erforscht werden. „Stechmücken gelten weltweit als die wichtigsten Überträger vektor-assoziierter Infektionserreger“, resümiert Klimpel. „Durch den globalen Wandel eröffnen sich für viele Arten neue Lebensräume. Die absehbar bedeutendste Rolle in Europa spielen dabei Invasoren wie die Asiatische Tigermücke (Aedes albopictus), Asiatische Buschmücke (Ochlerotatus japonicus) und die Gelbfiebermücke (Aedes aegypti). Dank der eingeworbenen EU-Mittel können wir uns jetzt grenzübergreifend mit diesem ganz Europa betreffenden Thema beschäftigen.“

Mit dem Programm ERA-Net BiodivERsA (European Research Area, ERA) fördert die Europäische Kommission die Zusammenarbeit zwischen den nationalen Forschungsförderinstitutionen; dies ist ein Hauptinstrument für das Zusammenwachsen des Europäischen Forschungsraums. Dank der hier aufgebauten europäischen Netzwerke können die nationalen und regionalen Forschungsaktivitäten besser koordiniert werden, um die Fragmentierung des Europäischen Forschungsraums zu überwinden. BiodivERsA ist ein derartiges Großprojekt, in dem die europäische Förderstrategie für Biodiversitätsforschung weiter vorangetrieben wird.

Für weitere Informationen kontaktieren Sie bitte:
Prof. Dr. Sven Klimpel
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1895
sven.klimpel@senckenberg.de
oder
Dr. Julia Krohmer
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Transferstelle
Tel. +49 (0)69 7542 1837
julia.krohmer@senckenberg.de
Download Pressefotos:
www.bik-f.de/root/index.php?page_id=32&ID=685&year=0
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
Mit dem Ziel, anhand eines breit angelegten Methodenspektrums die komplexen Wechselwirkungen von Biodiversität und Klima zu entschlüsseln, wird das Biodiversität und Klima Forschungszentrum (BiK‐F) seit 2008 im Rahmen der hessischen Landes‐Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) gefördert. Die Senckenberg Gesellschaft für Naturforschung und die Goethe Universität Frankfurt sowie weitere direkt eingebundene Partner kooperieren eng mit regionalen, nationalen und internationalen Akteuren aus Wissenschaft, Ressourcen‐ und Umweltmanagement, um Projektionen für die Zukunft zu entwickeln und wissenschaftlich gesicherte Empfehlungen für ein nachhaltiges Handeln zu geben.

Sabine Wendler | Senckenberg
Weitere Informationen:
http://www.bik‐f.de
http://www.senckenberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie