Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Forschungsergebnisse zur Evolution von Proteinnetzwerken

21.03.2013
Organismen werden erst durch die systemweite Vernetzung der Proteine lebensfähig. Funktion und Evolution dieser Proteinnetzwerke zählen derzeit zu den spannendsten Fragen in der Biologie.

Der Bioinformatiker Thomas Rattei, Universität Wien, und der Physiker Hernan Makse, City University New York (CUNY), verglichen rekonstruierte Proteinnetzwerke. Die Ergebnisse sind sowohl für die Evolutionsforschung als auch für die Interpretation von Genomsequenzdaten interessant. Aktuell publizieren sie dazu in der renommierten Fachzeitschrift PLOS ONE.


Ausschnitt eines Proteinnetzwerks
(Copyright: Universität Wien)

Die Zellen aller Lebewesen bestehen maßgeblich aus Proteinen, die in einem komplexen Miteinander verschiedenste Funktionen ermöglichen. Diese reichen vom Stoffwechsel über den Erhalt und die Steuerung der Zelle bis zum Austausch von Signalen mit anderen Zellen und der Umwelt. Kaum ein Protein wirkt dabei für sich allein – deren systemweite Vernetzung macht die Organismen erst lebensfähig. "Das Wissen um Funktion und Evolution dieser Proteinnetzwerke ist aktuell eine der spannendsten Fragen in der Biologie und z.B. auch in der Krebsforschung bedeutsam", erklärt Thomas Rattei, Leiter des Departments für Computational Systems Biology am Universitätszentrum Althanstraße, sein Forschungsgebiet.

Auf der Suche nach dem Bauplan für Proteinnetzwerke

Durch die Kombination von 20 verschiedenen Bausteinen – den Aminosäuren – ergibt sich eine enorme Vielfalt theoretisch möglicher Proteinvarianten; viel mehr als die geschätzte Anzahl aller Sterne im Universum. Die zufällige Ausbildung einer Wechselwirkung zwischen Proteinen erscheint daher extrem unwahrscheinlich. Wie sich dennoch so komplexe und vielfältige Proteinnetzwerke in den heutigen Lebensformen ausbilden konnten, untersuchten Thomas Rattei, Professor für "In Silico Genomics"

an der Universität Wien, und Hernan Makse, Professor für Physik an der City University New York (CUNY), mit ihren jeweiligen Arbeitsgruppen.

Ausgangspunkt des gemeinsamen Forschungsprojekts war eine Hypothese, in welcher der Vervielfältigung von Proteinen im Laufe der Evolution besondere Bedeutung zukommt. Wird das Erbgut eines Proteins im Genom dupliziert, was evolutionär recht oft vorkommt, dann wechselwirken Kopie und Original mit denselben Partnern im Proteinnetzwerk. Verändern sich danach Original und Kopie, können neuartige Proteine mit individuellen Funktionen und eigenen Partnern im Netzwerk entstehen. Somit würden Interaktionen im Netzwerk nicht neu geschaffen, sondern durch Vervielfältigung und Veränderung aus einfacheren Vorläufern entstehen.

Proteinnetzwerke ausgestorbener evolutionärer Vorläufer rekonstruiert

In einem aufwändigen Computerexperiment haben die beiden Arbeitsgruppen um Bioinformatiker Thomas Rattei und Physiker Hernan Makse diese Hypothese überprüft und verfeinert. Hierfür wurde eine neuartige Methode entwickelt, mit der sich aus den Genomen und Proteinnetzwerken heute lebender Organismen die Netzwerke längst ausgestorbener evolutionärer Vorläufer rekonstruieren lassen. Verwendet wurden Daten von sieben Arten aus den verschiedensten Bereichen des Lebens: von Bakterien über Pilze, Pflanzen, Tiere bis hin zum Menschen.

Heutige Netzwerke – komplexe Strukturen durch einfache Mechanismen

Der Vergleich der so rekonstruierten frühen Proteinnetzwerke lieferte ein überraschend eindeutiges Ergebnis: die heutigen Netzwerke lassen sich fast vollständig durch den Mechanismus von Vervielfältigung und Veränderung erklären. Neuartige Wechselwirkungen zwischen bestehenden Proteinen entstehen hingegen extrem selten. Dieses Prinzip scheint in der Evolution universell zu wirken, denn es wurde durch Daten aller untersuchten Organismen bestätigt. Dieser Wachstumsmechanismus könnte auch für andere Typen biologischer Netzwerke wirken, und er erklärt auf einfache Weise besondere Eigenschaften, wie beispielsweise die Selbstähnlichkeit (Fraktalität) in Proteinnetzwerken.

Hilfreich für Interpretation von Genomsequenzdaten und Evolutionsforschung

Die Ergebnisse des gemeinsamen Forschungsprojekts der Universität Wien und der CUNY werden nicht nur für die Evolutionsforschung Bedeutung haben. Sie unterstützen insbesondere die Interpretation von Genomsequenzdaten, die in den letzten Jahren in vielen Bereichen der Biologie und Medizin zur etablierten Methode geworden ist. Diese Zielstellung haben auch zahlreiche aktuelle Projekte des Departments für Computational Systems Biology, das mit systemweiten Forschungsansätzen Krankheitserreger, mikrobielle Gemeinschaften und molekulare Wechselwirkungen zwischen verschiedenen Organismen analysiert.

Publikation in PLOS ONE:
The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks. Yuliang Jin, Dmitrij Turaev, Thomas Weinmaier, Thomas Rattei, Hernan Makse. In: PLOS ONE, 2013.
Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Thomas Rattei
Department für Computational
Systems Biology
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-762 10
M +43-664-60277-762 10
thomas.rattei@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://dx.plos.org/10.1371/journal.pone.0058134
http://compsysbio.univie.ac.at/personen/rattei/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte