Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Forschungsergebnisse zur Evolution von Proteinnetzwerken

21.03.2013
Organismen werden erst durch die systemweite Vernetzung der Proteine lebensfähig. Funktion und Evolution dieser Proteinnetzwerke zählen derzeit zu den spannendsten Fragen in der Biologie.

Der Bioinformatiker Thomas Rattei, Universität Wien, und der Physiker Hernan Makse, City University New York (CUNY), verglichen rekonstruierte Proteinnetzwerke. Die Ergebnisse sind sowohl für die Evolutionsforschung als auch für die Interpretation von Genomsequenzdaten interessant. Aktuell publizieren sie dazu in der renommierten Fachzeitschrift PLOS ONE.


Ausschnitt eines Proteinnetzwerks
(Copyright: Universität Wien)

Die Zellen aller Lebewesen bestehen maßgeblich aus Proteinen, die in einem komplexen Miteinander verschiedenste Funktionen ermöglichen. Diese reichen vom Stoffwechsel über den Erhalt und die Steuerung der Zelle bis zum Austausch von Signalen mit anderen Zellen und der Umwelt. Kaum ein Protein wirkt dabei für sich allein – deren systemweite Vernetzung macht die Organismen erst lebensfähig. "Das Wissen um Funktion und Evolution dieser Proteinnetzwerke ist aktuell eine der spannendsten Fragen in der Biologie und z.B. auch in der Krebsforschung bedeutsam", erklärt Thomas Rattei, Leiter des Departments für Computational Systems Biology am Universitätszentrum Althanstraße, sein Forschungsgebiet.

Auf der Suche nach dem Bauplan für Proteinnetzwerke

Durch die Kombination von 20 verschiedenen Bausteinen – den Aminosäuren – ergibt sich eine enorme Vielfalt theoretisch möglicher Proteinvarianten; viel mehr als die geschätzte Anzahl aller Sterne im Universum. Die zufällige Ausbildung einer Wechselwirkung zwischen Proteinen erscheint daher extrem unwahrscheinlich. Wie sich dennoch so komplexe und vielfältige Proteinnetzwerke in den heutigen Lebensformen ausbilden konnten, untersuchten Thomas Rattei, Professor für "In Silico Genomics"

an der Universität Wien, und Hernan Makse, Professor für Physik an der City University New York (CUNY), mit ihren jeweiligen Arbeitsgruppen.

Ausgangspunkt des gemeinsamen Forschungsprojekts war eine Hypothese, in welcher der Vervielfältigung von Proteinen im Laufe der Evolution besondere Bedeutung zukommt. Wird das Erbgut eines Proteins im Genom dupliziert, was evolutionär recht oft vorkommt, dann wechselwirken Kopie und Original mit denselben Partnern im Proteinnetzwerk. Verändern sich danach Original und Kopie, können neuartige Proteine mit individuellen Funktionen und eigenen Partnern im Netzwerk entstehen. Somit würden Interaktionen im Netzwerk nicht neu geschaffen, sondern durch Vervielfältigung und Veränderung aus einfacheren Vorläufern entstehen.

Proteinnetzwerke ausgestorbener evolutionärer Vorläufer rekonstruiert

In einem aufwändigen Computerexperiment haben die beiden Arbeitsgruppen um Bioinformatiker Thomas Rattei und Physiker Hernan Makse diese Hypothese überprüft und verfeinert. Hierfür wurde eine neuartige Methode entwickelt, mit der sich aus den Genomen und Proteinnetzwerken heute lebender Organismen die Netzwerke längst ausgestorbener evolutionärer Vorläufer rekonstruieren lassen. Verwendet wurden Daten von sieben Arten aus den verschiedensten Bereichen des Lebens: von Bakterien über Pilze, Pflanzen, Tiere bis hin zum Menschen.

Heutige Netzwerke – komplexe Strukturen durch einfache Mechanismen

Der Vergleich der so rekonstruierten frühen Proteinnetzwerke lieferte ein überraschend eindeutiges Ergebnis: die heutigen Netzwerke lassen sich fast vollständig durch den Mechanismus von Vervielfältigung und Veränderung erklären. Neuartige Wechselwirkungen zwischen bestehenden Proteinen entstehen hingegen extrem selten. Dieses Prinzip scheint in der Evolution universell zu wirken, denn es wurde durch Daten aller untersuchten Organismen bestätigt. Dieser Wachstumsmechanismus könnte auch für andere Typen biologischer Netzwerke wirken, und er erklärt auf einfache Weise besondere Eigenschaften, wie beispielsweise die Selbstähnlichkeit (Fraktalität) in Proteinnetzwerken.

Hilfreich für Interpretation von Genomsequenzdaten und Evolutionsforschung

Die Ergebnisse des gemeinsamen Forschungsprojekts der Universität Wien und der CUNY werden nicht nur für die Evolutionsforschung Bedeutung haben. Sie unterstützen insbesondere die Interpretation von Genomsequenzdaten, die in den letzten Jahren in vielen Bereichen der Biologie und Medizin zur etablierten Methode geworden ist. Diese Zielstellung haben auch zahlreiche aktuelle Projekte des Departments für Computational Systems Biology, das mit systemweiten Forschungsansätzen Krankheitserreger, mikrobielle Gemeinschaften und molekulare Wechselwirkungen zwischen verschiedenen Organismen analysiert.

Publikation in PLOS ONE:
The evolutionary dynamics of protein-protein interaction networks inferred from the reconstruction of ancient networks. Yuliang Jin, Dmitrij Turaev, Thomas Weinmaier, Thomas Rattei, Hernan Makse. In: PLOS ONE, 2013.
Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Thomas Rattei
Department für Computational
Systems Biology
Universität Wien
1090 Wien, Althanstraße 14 (UZA I)
T +43-1-4277-762 10
M +43-664-60277-762 10
thomas.rattei@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://dx.plos.org/10.1371/journal.pone.0058134
http://compsysbio.univie.ac.at/personen/rattei/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften