Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Experimente mit Heliumatomen ermöglichen es, die Elektronenkorrelation beliebig ein- und auszuschalten

08.09.2014

Bin ich da, bin ich weg …

Abgesehen vom Wasserstoffatom, das nur aus einem Proton und einem Elektron besteht, ist das Heliumatom das am einfachsten aufgebaute Atom unserer Welt. Das Heliumatom besteht aus einem doppelt geladenen Kern und zwei ihn umkreisenden Elektronen. Die Existenz von zwei Elektronen führt zu einem neuen Gesichtspunkt mit weitreichenden Konsequenzen, nämlich dem Konzept der Elektronenkorrelation. In einer in dieser Woche erscheinenden Veröffentlichung im Fachjournal Physical Review Letters [1] wird von der experimentellen Beobachtung des kontrollierten Auftauchens von Elektronenkorrelation in Heliumatomen berichtet. Photoionisation von Helium wurde untersucht unter Bedingungen, bei denen die Elektronenkorrelation beliebig ein- und ausgeschalten werden kann. Für ausgeschaltete Korrelation verhält sich Helium wie ein Wasserstoffatom. Für eingeschaltete Korrelation hingegen wird die Dynamik des Ionisationsprozesses stark durch die Wechselwirkung zwischen den beiden Elektronen bestimmt.


Ionisation von Heliumatomen, aufgenommen mit einem bildgebenden Detektor. Interferenzringe werden beobachtet, die die Knotenstruktur der angeregten elektronischen Wellenfunktion wiedergeben, oder aber alternativ solche, die von Wegunterschieden zum Detektor herrühren. Im ersteren Falle zeigt Helium das Verhalten von Wasserstoffatomen, bei dem Elektronenkorrelation keine Rolle spielt. Im zweiten Fall wird die Ionisation stark von der Elektronenkorrelation bestimmt. Abbildung: MBI

Im Experiment wurden Heliumatome durch die Absorption eines einzelnen Photons im ultravioletten Spektralbereich ionisiert. Dies war möglich, weil die Atome durch Stöße mit energiereichen Elektronen in einer Entladungsquelle in einen langlebigen angeregten Zustand gebracht wurden. Die Energie des anregenden Photons wurde so eingestellt, dass sie gerade zur Ionisation des Atoms ausreichte. Damit wurden 99,9% der Photonenenergie zur Überwindung der Bindungsenergie des Elektrons aufgewendet und nur 0,1% an das nach der Ionisation befreite Elektron als Bewegungsenergie abgegeben. Die entstehenden Photoelektronen waren damit sehr langsam. Im Experiment wurden sie auf einen zweidimensionalen Detektor beschleunigt, wo ihre Auftrefforte gemessen wurden. Die Auftrefforte bilden die Geschwindigkeiten der Elektronen in der Detektorebene ab.

Wie eindrucksvoll in dem berühmten Doppelspaltexperiment zur Interferenz einzelner Elektronen demonstriert, das in einer Abstimmung von „Physicsworld“ vor einigen Jahren zum „Allerschönsten Physik-Experiment“ gekürt wurde, haben Elektronen sowohl Teilchen- als auch Wellencharakter. Dafür verantwortlich ist die Quantenmechanik. Die Welleneigenschaften von Materie werden durch eine nach dem französischen Physiker de Broglie benannte Wellenlänge beschrieben, die jedem sich bewegenden Teilchen zugewiesen werden kann. Je niedriger die kinetische Energie des Elektrons ist, desto größer wird die de Broglie Wellenlänge. Ist die Energie des Elektrons nur klein genug, wird die de Broglie Wellenlänge in der makroskopischen Welt beobachtbar. In den in dieser Woche veröffentlichten Photoionisations-Experimenten führt die Wellennatur der langsamen Elektronen zur Beobachtung einer Reihe von Interferenzringen, wobei konstruktive und destruktive Interferenzen sich auf dem Detektor abwechseln (siehe Abbildung 1).

Dieses Interferenzphänomen ist durch Experimente unseres Teams in den letzten Jahren immer genauer vermessen worden. In der Tat haben unsere vorherigen Experimente die Existenz von zwei verschiedenen Mechanismen für die Entstehung der Interferenzen zu Tage gefördert. In Experimenten mit Wasserstoffatomen wurde gezeigt, dass die Interferenzen mit der Knotenstruktur der Wellenfunktion zusammenhängen kann, die durch Photoabsorption im Atom angeregt wurde. In Experimenten mit größeren Atomen mit vielen Elektronen, wie etwa den genau vermessenen Xenonatomen, wurde gezeigt, dass die Interferenzen auch das Resultat von Unterschieden in der Länge möglicher Wege des Elektrons zum Detektor sein können. Salopp gesagt: Zwei Wege, die sich um eine ganzzahlige Anzahl von de Broglie Wellenlängen unterscheiden, werden zu konstruktiver Interferenz, zwei Wege, die sich um eine halbzahlige Anzahl von de Broglie Wellenlängen unterscheiden, werden zu destruktiver Interferenz führen.

Wie nun in der aktuellen Studie gezeigt, treten bei Heliumatomen beide Mechanismen auf. Interessanterweise reicht eine kleine Änderung (<< 1%) in der Stärke eines angelegten, äußeren elektrischen Feldes aus, um das beobachtete Interferenzmuster zu verändern. Wie sich zeigt, lassen sich damit „wasserstoffähnliche“ Heliumatome, bei denen die Knotenstruktur der Wellenfunktion das Interferenzmuster bestimmt, in „xenonartige“ Heliumatome überführen, bei denen die auftauchende Elektronenkorrelation die „wasserstoffähnliche“ Wellenfunktion zerstört. 

Auf diese Weise wird das Heliumatom zu einem wunderbaren Nano-Labor für das kontrollierte Ein- und Ausschalten der Elektronenkorrelation. 

Kontakt: Prof. Marc Vrakking, Max-Born Institut (MBI), Max-Born Strasse 2A, 12489 Berlin, Germany
E-mail: marc.vrakking@mbi-berlin.de; tel. +49-30-6392-1200

Saskia Donath | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie