Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Experimente mit Heliumatomen ermöglichen es, die Elektronenkorrelation beliebig ein- und auszuschalten

08.09.2014

Bin ich da, bin ich weg …

Abgesehen vom Wasserstoffatom, das nur aus einem Proton und einem Elektron besteht, ist das Heliumatom das am einfachsten aufgebaute Atom unserer Welt. Das Heliumatom besteht aus einem doppelt geladenen Kern und zwei ihn umkreisenden Elektronen. Die Existenz von zwei Elektronen führt zu einem neuen Gesichtspunkt mit weitreichenden Konsequenzen, nämlich dem Konzept der Elektronenkorrelation. In einer in dieser Woche erscheinenden Veröffentlichung im Fachjournal Physical Review Letters [1] wird von der experimentellen Beobachtung des kontrollierten Auftauchens von Elektronenkorrelation in Heliumatomen berichtet. Photoionisation von Helium wurde untersucht unter Bedingungen, bei denen die Elektronenkorrelation beliebig ein- und ausgeschalten werden kann. Für ausgeschaltete Korrelation verhält sich Helium wie ein Wasserstoffatom. Für eingeschaltete Korrelation hingegen wird die Dynamik des Ionisationsprozesses stark durch die Wechselwirkung zwischen den beiden Elektronen bestimmt.


Ionisation von Heliumatomen, aufgenommen mit einem bildgebenden Detektor. Interferenzringe werden beobachtet, die die Knotenstruktur der angeregten elektronischen Wellenfunktion wiedergeben, oder aber alternativ solche, die von Wegunterschieden zum Detektor herrühren. Im ersteren Falle zeigt Helium das Verhalten von Wasserstoffatomen, bei dem Elektronenkorrelation keine Rolle spielt. Im zweiten Fall wird die Ionisation stark von der Elektronenkorrelation bestimmt. Abbildung: MBI

Im Experiment wurden Heliumatome durch die Absorption eines einzelnen Photons im ultravioletten Spektralbereich ionisiert. Dies war möglich, weil die Atome durch Stöße mit energiereichen Elektronen in einer Entladungsquelle in einen langlebigen angeregten Zustand gebracht wurden. Die Energie des anregenden Photons wurde so eingestellt, dass sie gerade zur Ionisation des Atoms ausreichte. Damit wurden 99,9% der Photonenenergie zur Überwindung der Bindungsenergie des Elektrons aufgewendet und nur 0,1% an das nach der Ionisation befreite Elektron als Bewegungsenergie abgegeben. Die entstehenden Photoelektronen waren damit sehr langsam. Im Experiment wurden sie auf einen zweidimensionalen Detektor beschleunigt, wo ihre Auftrefforte gemessen wurden. Die Auftrefforte bilden die Geschwindigkeiten der Elektronen in der Detektorebene ab.

Wie eindrucksvoll in dem berühmten Doppelspaltexperiment zur Interferenz einzelner Elektronen demonstriert, das in einer Abstimmung von „Physicsworld“ vor einigen Jahren zum „Allerschönsten Physik-Experiment“ gekürt wurde, haben Elektronen sowohl Teilchen- als auch Wellencharakter. Dafür verantwortlich ist die Quantenmechanik. Die Welleneigenschaften von Materie werden durch eine nach dem französischen Physiker de Broglie benannte Wellenlänge beschrieben, die jedem sich bewegenden Teilchen zugewiesen werden kann. Je niedriger die kinetische Energie des Elektrons ist, desto größer wird die de Broglie Wellenlänge. Ist die Energie des Elektrons nur klein genug, wird die de Broglie Wellenlänge in der makroskopischen Welt beobachtbar. In den in dieser Woche veröffentlichten Photoionisations-Experimenten führt die Wellennatur der langsamen Elektronen zur Beobachtung einer Reihe von Interferenzringen, wobei konstruktive und destruktive Interferenzen sich auf dem Detektor abwechseln (siehe Abbildung 1).

Dieses Interferenzphänomen ist durch Experimente unseres Teams in den letzten Jahren immer genauer vermessen worden. In der Tat haben unsere vorherigen Experimente die Existenz von zwei verschiedenen Mechanismen für die Entstehung der Interferenzen zu Tage gefördert. In Experimenten mit Wasserstoffatomen wurde gezeigt, dass die Interferenzen mit der Knotenstruktur der Wellenfunktion zusammenhängen kann, die durch Photoabsorption im Atom angeregt wurde. In Experimenten mit größeren Atomen mit vielen Elektronen, wie etwa den genau vermessenen Xenonatomen, wurde gezeigt, dass die Interferenzen auch das Resultat von Unterschieden in der Länge möglicher Wege des Elektrons zum Detektor sein können. Salopp gesagt: Zwei Wege, die sich um eine ganzzahlige Anzahl von de Broglie Wellenlängen unterscheiden, werden zu konstruktiver Interferenz, zwei Wege, die sich um eine halbzahlige Anzahl von de Broglie Wellenlängen unterscheiden, werden zu destruktiver Interferenz führen.

Wie nun in der aktuellen Studie gezeigt, treten bei Heliumatomen beide Mechanismen auf. Interessanterweise reicht eine kleine Änderung (<< 1%) in der Stärke eines angelegten, äußeren elektrischen Feldes aus, um das beobachtete Interferenzmuster zu verändern. Wie sich zeigt, lassen sich damit „wasserstoffähnliche“ Heliumatome, bei denen die Knotenstruktur der Wellenfunktion das Interferenzmuster bestimmt, in „xenonartige“ Heliumatome überführen, bei denen die auftauchende Elektronenkorrelation die „wasserstoffähnliche“ Wellenfunktion zerstört. 

Auf diese Weise wird das Heliumatom zu einem wunderbaren Nano-Labor für das kontrollierte Ein- und Ausschalten der Elektronenkorrelation. 

Kontakt: Prof. Marc Vrakking, Max-Born Institut (MBI), Max-Born Strasse 2A, 12489 Berlin, Germany
E-mail: marc.vrakking@mbi-berlin.de; tel. +49-30-6392-1200

Saskia Donath | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie