Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Experimente mit Heliumatomen ermöglichen es, die Elektronenkorrelation beliebig ein- und auszuschalten

08.09.2014

Bin ich da, bin ich weg …

Abgesehen vom Wasserstoffatom, das nur aus einem Proton und einem Elektron besteht, ist das Heliumatom das am einfachsten aufgebaute Atom unserer Welt. Das Heliumatom besteht aus einem doppelt geladenen Kern und zwei ihn umkreisenden Elektronen. Die Existenz von zwei Elektronen führt zu einem neuen Gesichtspunkt mit weitreichenden Konsequenzen, nämlich dem Konzept der Elektronenkorrelation. In einer in dieser Woche erscheinenden Veröffentlichung im Fachjournal Physical Review Letters [1] wird von der experimentellen Beobachtung des kontrollierten Auftauchens von Elektronenkorrelation in Heliumatomen berichtet. Photoionisation von Helium wurde untersucht unter Bedingungen, bei denen die Elektronenkorrelation beliebig ein- und ausgeschalten werden kann. Für ausgeschaltete Korrelation verhält sich Helium wie ein Wasserstoffatom. Für eingeschaltete Korrelation hingegen wird die Dynamik des Ionisationsprozesses stark durch die Wechselwirkung zwischen den beiden Elektronen bestimmt.


Ionisation von Heliumatomen, aufgenommen mit einem bildgebenden Detektor. Interferenzringe werden beobachtet, die die Knotenstruktur der angeregten elektronischen Wellenfunktion wiedergeben, oder aber alternativ solche, die von Wegunterschieden zum Detektor herrühren. Im ersteren Falle zeigt Helium das Verhalten von Wasserstoffatomen, bei dem Elektronenkorrelation keine Rolle spielt. Im zweiten Fall wird die Ionisation stark von der Elektronenkorrelation bestimmt. Abbildung: MBI

Im Experiment wurden Heliumatome durch die Absorption eines einzelnen Photons im ultravioletten Spektralbereich ionisiert. Dies war möglich, weil die Atome durch Stöße mit energiereichen Elektronen in einer Entladungsquelle in einen langlebigen angeregten Zustand gebracht wurden. Die Energie des anregenden Photons wurde so eingestellt, dass sie gerade zur Ionisation des Atoms ausreichte. Damit wurden 99,9% der Photonenenergie zur Überwindung der Bindungsenergie des Elektrons aufgewendet und nur 0,1% an das nach der Ionisation befreite Elektron als Bewegungsenergie abgegeben. Die entstehenden Photoelektronen waren damit sehr langsam. Im Experiment wurden sie auf einen zweidimensionalen Detektor beschleunigt, wo ihre Auftrefforte gemessen wurden. Die Auftrefforte bilden die Geschwindigkeiten der Elektronen in der Detektorebene ab.

Wie eindrucksvoll in dem berühmten Doppelspaltexperiment zur Interferenz einzelner Elektronen demonstriert, das in einer Abstimmung von „Physicsworld“ vor einigen Jahren zum „Allerschönsten Physik-Experiment“ gekürt wurde, haben Elektronen sowohl Teilchen- als auch Wellencharakter. Dafür verantwortlich ist die Quantenmechanik. Die Welleneigenschaften von Materie werden durch eine nach dem französischen Physiker de Broglie benannte Wellenlänge beschrieben, die jedem sich bewegenden Teilchen zugewiesen werden kann. Je niedriger die kinetische Energie des Elektrons ist, desto größer wird die de Broglie Wellenlänge. Ist die Energie des Elektrons nur klein genug, wird die de Broglie Wellenlänge in der makroskopischen Welt beobachtbar. In den in dieser Woche veröffentlichten Photoionisations-Experimenten führt die Wellennatur der langsamen Elektronen zur Beobachtung einer Reihe von Interferenzringen, wobei konstruktive und destruktive Interferenzen sich auf dem Detektor abwechseln (siehe Abbildung 1).

Dieses Interferenzphänomen ist durch Experimente unseres Teams in den letzten Jahren immer genauer vermessen worden. In der Tat haben unsere vorherigen Experimente die Existenz von zwei verschiedenen Mechanismen für die Entstehung der Interferenzen zu Tage gefördert. In Experimenten mit Wasserstoffatomen wurde gezeigt, dass die Interferenzen mit der Knotenstruktur der Wellenfunktion zusammenhängen kann, die durch Photoabsorption im Atom angeregt wurde. In Experimenten mit größeren Atomen mit vielen Elektronen, wie etwa den genau vermessenen Xenonatomen, wurde gezeigt, dass die Interferenzen auch das Resultat von Unterschieden in der Länge möglicher Wege des Elektrons zum Detektor sein können. Salopp gesagt: Zwei Wege, die sich um eine ganzzahlige Anzahl von de Broglie Wellenlängen unterscheiden, werden zu konstruktiver Interferenz, zwei Wege, die sich um eine halbzahlige Anzahl von de Broglie Wellenlängen unterscheiden, werden zu destruktiver Interferenz führen.

Wie nun in der aktuellen Studie gezeigt, treten bei Heliumatomen beide Mechanismen auf. Interessanterweise reicht eine kleine Änderung (<< 1%) in der Stärke eines angelegten, äußeren elektrischen Feldes aus, um das beobachtete Interferenzmuster zu verändern. Wie sich zeigt, lassen sich damit „wasserstoffähnliche“ Heliumatome, bei denen die Knotenstruktur der Wellenfunktion das Interferenzmuster bestimmt, in „xenonartige“ Heliumatome überführen, bei denen die auftauchende Elektronenkorrelation die „wasserstoffähnliche“ Wellenfunktion zerstört. 

Auf diese Weise wird das Heliumatom zu einem wunderbaren Nano-Labor für das kontrollierte Ein- und Ausschalten der Elektronenkorrelation. 

Kontakt: Prof. Marc Vrakking, Max-Born Institut (MBI), Max-Born Strasse 2A, 12489 Berlin, Germany
E-mail: marc.vrakking@mbi-berlin.de; tel. +49-30-6392-1200

Saskia Donath | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebs erfolgreich mit Fieber behandeln
20.04.2018 | Technische Hochschule Mittelhessen

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics