Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zur Entstehung von Ziliopathien

27.10.2014

Erkrankungen der Flimmerhärchen (Zilien) auf Zellen spielen bei Lungenerkrankungen oder Diabetes eine zentrale Rolle. Wissenschaftler am Helmholtz Zentrum München entdeckten jetzt das Protein Flattop. Es steuert die asymmetrischen Positionierung von Organellen. Fehlfunktionen in diesem Prozess führen zu unterschiedlichen Krankheitsbildern.

Bis heute ist nicht genau bekannt, wie Proteine die planare Zellpolarität steuern beziehungsweise die Positionierung des Basalkörpers regulieren. Wissenschaftlern des Helmholtz Zentrums München ist jetzt ein entscheidender Schritt zur Aufklärung dieses Mechanismus gelungen. Moritz Gegg und Professor Dr. Heiko Lickert vom Institut für Diabetes und Regenerationsforschung (IDR) haben neue Erkenntnisse im Fachjournal „eLIFE“ veröffentlicht.

„Epitheliale Zellschichten bedecken alle inneren und äußeren Körper- und Organoberflächen im menschlichen Körper, zum Beispiel in der Lunge, im Darm, im Pankreas und im Innenohr“, erklärt Moritz Gegg. Zilien, also kleine, haarähnliche, auf Mikrotubuli basierende Strukturen, befinden sich präzise angeordnet auf vielen dieser epithelialen Zellen. „Nur durch diese exakte Positionierung können Zilienschläge so präzise koordiniert werden, dass etwa Schleim aus der Lunge transportiert werden kann“, ergänzt Heiko Lickert.

Zilien werden von Basalkörpern an der Plasmamembran verankert und müssen wie viele andere Organellen an einer bestimmten Position in einer Zelle lokalisiert werden. Um dies zu gewährleisten, kommt die planare Zellpolaritätsmaschinerie zum Einsatz. Sie orientiert Strukturen in einer einzelnen Zelle, bestimmt aber auch die Position dieser Zellen in einem komplexen, epithelialen Gewebe. Ein kompletter Verlust dieser Zellpolaritätsmaschinerie kann zu sehr schweren Entwicklungsstörungen führen, wie zum Beispiel chronischer Bronchitis oder Taubheit.

Einige Proteine assistieren bei der Ausbildung dieser Zellpolarität, indem sie die Orientierung des intrazellulären Zytoskeletts beeinflussen. Dadurch kann ein Komplex aus planaren Zellpolaritätsproteinen die Lokalisation einzelner Organellen und Zellen im epithelialen Zellverband koordinieren. Obwohl schon viele Proteine, die diese Prozesse regulieren, bekannt sind, fragen sich Wissenschaftler schon lange, wie beide Systeme miteinander interagieren, um planare Zellpolarität auszubilden.

„Wir konnten im präklinischen Modell zeigen, dass ein Protein, welches wir Flattop genannt haben, zusammen mit einem weiteren Protein namens Dlg3 den Basalkörper und somit auch die Zilien positioniert“, so Gegg. Modelle ohne funktionelles Flattop zeigen einen Defekt der Zilienbildung an der Oberfläche des Lungenepithels. Auch waren die Zilien im Innenohr nicht richtig lokalisiert. „Flattop und Dlg3 interagieren im Innenohr physikalisch miteinander“, sagt Lickert. Beide wechselwirken zusätzlich mit einem der planaren Zellpolaritätsgene. Dieser Komplex umgibt den Basalkörper und verbindet ihn mit dem zellulären Zytoskelett.

Lickert: „Diese Entdeckung führt zu einem besseren Verständnis der Basalkörper- und Zilienpositionierung. Eine Fehlregulation der Ziliogenese führt zu Krankheiten beim Menschen, sprich Ziliopathien, wie Diabetes, chronischen Lungenkrankheiten, Taubheit und eventuell auch Krebs.“ Flattop könnte auch bei Patienten mit Lungenkrankheiten mutiert sein. Verluste dieses Proteins ziehen Defekte der Sinneszellen im Innenohr nach sich. Darüber hinaus gibt es Hinweise, dass Flattop Zellteilungen im Darm reguliert. Gegg: „Zukünftige Studien sind nötig, um zu klären, wie genau der Proteinkomplex aus Flattop, Dlg3, dem Kernpolaritätsprotein und den Basalkörperproteinen mit dem Zytoskeltett interagiert. Zusätzlich muss die wichtige Frage geklärt werden, inwiefern dieser Komplex auch in anderen epithelialen Geweben eine ähnliche Funktion erfüllt.“

Weitere Informationen

Gegg, M.et al. (2014), Flattop regulates basal body docking and positioning in mono- and multiciliated cells
DOI: dx.doi.org/10.7554/eLife.03842

Link zur Fachpublikation http://elifesciences.org/content/early/2014/10/08/eLife.03842

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Diabetesforschung e.V.http://www.helmholtz-muenchen.de/

Die Arbeiten des Instituts für Diabetes- und Regenerationsforschung (IDR) konzentrieren sich auf die biologische und physiologische Erforschung der Bauchspeicheldrüse bzw. der Insulin-produzierenden Betazellen. So trägt das IDR zur Aufklärung der Entstehung von Diabetes und der Entdeckung neuer Risikogene der Erkrankung bei. Experten aus den Bereichen Stammzellforschung und Stoffwechselerkrankungen arbeiten gemeinsam an Lösungen für regenerative Therapieansätze des Diabetes. Das IDR ist Teil des Helmholtz Diabetes Center (HDC).http://www.helmholtz-muenchen.de/idr/index.html

Fachlicher Ansprechpartner

Dr. Moritz Gegg, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Diabetes und Regenerationsforschung, Ingolstädter Landstr. 1, 85764 Neuherberg – Tel.: 089-3187-3759, E-Mail: moritz.gegg@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/artic...

Susanne Eichacker | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten