Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse über die Bindung von Molekülketten an Oberflächen

04.03.2014

Einem internationalen Forschungsteam ist es gelungen, mithilfe der Spitze eines Rasterkraftmikroskops einzelne Molekülketten von einer Goldoberfläche zu entfernen. Dabei konnten sie Kräfte beobachten, mit denen sich die Bindungsenergie von Molekülen bestimmen lässt. Die Resultate des Forschungsteams, an dem Physiker der Universität Basel beteiligt waren, wurden in der renommierten Fachzeitschrift PNAS veröffentlicht.

Das Verfahren der Rasterkraftmikroskopie dient normalerweise dazu, die Oberflächentopographie eines Materials in sehr hoher Auflösung abzubilden, indem die Mikroskopspitze rasterförmig über eine Oberfläche fährt. Die Auflösung ist dabei so hoch, dass sich sogar einzelne Atome abbilden lassen.


Molekülkette wird mittels Mikroskopspitze von einer Goldoberfläche abgezogen.

(Foto: Shigeki Kawai)

«Das entspricht ungefähr dem Versuch, mit der Spitze des Matterhorns einen Pingpongball abzutasten», sagt Prof. Ernst Meyer vom Departement Physik der Universität Basel. Anhand einer verbesserten Methode können die Forschenden nun sehr präzise Aussagen über den Prozess des Loslösens von Molekülen und die dazu benötigte Kraft treffen.

Mittels der Spitze eines Rasterkraftmikroskops gelang es den Forschenden nämlich, einzelne Molekülketten (Polymere) von einer Goldoberfläche abzulösen. «Die Wechselwirkung zwischen der Oberfläche und den Molekülen ist so schwach, dass sich immer nur ein Kettenglied nach dem anderen ablöst. So lässt sich die Kette fast senkrecht zur Oberfläche abziehen», erklärt Meyer den Vorgang. Die Forschenden beobachteten dabei Schwingungen, mit denen sich quantitative Aussagen über die molekulare Bindungsenergie treffen lassen.

Bewegung ohne Reibung

Ausserdem zeigten die Experimente, dass sich die molekularen Ketten mit sehr geringen Seitwärtskräften abziehen lassen. Dieses Konzept der praktisch reibungsfreien Bewegung wurde bereits zuvor anhand eines theoretischen Modells vorausgesagt und wurde nun für molekulare Ketten auf Goldoberflächen erstmals bestätigt. Bisher konnte das mechanische Verhalten einer einzelnen Molekülkette während des Abziehens von einer Oberfläche noch nie mit atomarer Auflösung abgebildet und vermessen werden. Die Beobachtungen und Rechnungen des Forschungsteams liefern nun erstmals detaillierte Einsichten in diesen Prozess.

Nicht nur für die Physik, sondern auch für die Biologie und Chemie sind solche Untersuchungen von Interesse, denn das Konzept, Molekülketten abzuziehen, ist auch auf biologische Moleküle anwendbar. Bisher hat es wichtige Hinweise auf das Falten und Entfalten von DNS und Proteinen gegeben. Mit der neuen Methode könnten chemische Reaktionen von viel kleineren Einheiten innerhalb von Biomolekülen oder von komplexen Polymerketten unter dem Einfluss von Zugkräften und katalytischen Nanopartikeln untersucht werden.

Originalbeitrag

Shigeki Kawai, Matthias Koch, Enrico Gnecco, Ali Sadeghi, Rémy Pawlak, Thilo Glatzel, Jutta Schwarz, Stefan Goedecker, Stefan Hecht, Alexis Baratoff, Leonhard Grill and Ernst Meyer
Quantifying the atomic-level mechanics of single long physisorbed molecular chains
www.pnas.org/cgi/doi:10.1073/pnas.1319938111

Weitere Auskünfte
Prof. Ernst Meyer, Universität Basel, Departement Physik, Tel. +41 61 267 37 24, E- Mail: ernst.meyer@unibas.ch

Weitere Informationen:

http://unibas.ch/index.cfm?uuid=872F3068BB9FFB71DC9D3BF5D34565BC&type=search...

Olivia Poisson | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie