Neue Erkenntnisse über Photosynthese: Forscher entschlüsseln Genom eines lebenden Fossils

Die Folge: Zum ersten und bisher einzigen Mal entstand so ein Einzeller, der Photosynthese betreiben konnte. Das war die Initialzündung für die Entstehung aller Pflanzen – und eines lebenden Fossils namens „Cyanophora paradoxa“. Sein Genom hat ein internationales Forscherteam jetzt entschlüsselt und die Grundlage gelegt für ein besseres Verständnis von pflanzlichen Mechanismen wie Lichtsammlung und Proteintransport. Mitautor des entsprechenden „Science“-Artikels ist Dr. Jürgen Steiner, Molekularbiologe der Martin-Luther-Universität Halle-Wittenberg (MLU).

„Erstaunlicherweise ist es in der Erdgeschichte wirklich nur einmal passiert, dass ein tierischer Einzeller ein Cyanobakterium aufgenommen und als Plastiden, also als photosynthetische Zellorganelle, etabliert hat“, sagt Jürgen Steiner. „Umso interessanter ist für uns, die genetische Ausstattung des dabei entstandenen Organismus zu betrachten.“ Die Plastiden dieses lebenden Fossils verfügen über eine rudimentäre bakterielle Zellwand, ein klares Relikt des damals aufgenommenen Cyanobakteriums.

„Wir haben im Kerngenom rund 28.000 Proteingene gefunden und konnten darauf aufbauend Proteinstammbäume darstellen.“ Wichtig sei dies vor allem für das Verständnis des Transports von Proteinen, deren Gensequenzen im Laufe der Evolution in den Zellkern verlagert wurden und nun nach ihrer Synthese im Cytosol zurück in den Plastiden gelangen müssen. „Das klingt simpel, ist aber ein hochkomplexer Prozess. In unserem Fossil können wir ihn in seiner ursprünglichen Form betrachten. Wir haben sozusagen den ersten Otto-Motor vor uns.“

Der Einblick in die frühe Entwicklungsgeschichte kann laut Steiner zum Verständnis aller möglichen Pflanzenmechanismen beitragen. „Gerade in Bezug auf die Lichtsammelkomplexe der Pflanzen erhoffen wir uns neue Erkenntnisse.“ Dabei handelt es sich um eine Ansammlung von Proteinkomplexen, welche die Energie für die Photosynthese bündeln – für den Molekularbiologen ein besonders spannendes Forschungsfeld. Im Biologicum auf dem halleschen Weinberg Campus laufen dazu Laboruntersuchungen. Für das aktuelle „Science“-Paper, das am 17. Februar erscheint, hat sich Steiner allerdings vor allem auf die bioinformatische Auswertung von Daten konzentriert, die Forscherkollegen in den USA gesammelt haben.

Projektleiter war Debashish Bhattacharya von der Rutgers University in New Brunswick (New Jersey). Beteiligt waren Forscher aus USA, Kanada, Frankreich, Südkorea, Österreich und Deutschland. Dr. Jürgen Steiner ist Österreicher. Der 45-Jährige kam vor drei Jahren aus Wien nach Halle. Sein Doktorvater Professor Wolfgang Löffelhardt ist ebenfalls Co-Autor des „Science“-Artikels und hatte 2009 die Kurt-Mothes-Gastprofessur an der Martin-Luther-Universität inne.

Veröffentlichung in „Science“ (Ausgabe vom 17.02.2012):
„Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants“

doi: 10.1126/science.1213561

Ansprechpartner:
Dr. Jürgen Steiner
Institut für Biologie
Telefon: 0345 55 26203
E-Mail: juergen.steiner@pflanzenphys.uni-halle.de

Media Contact

Carsten Heckmann idw

Weitere Informationen:

http://www.uni-halle.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer