Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zum Entstehen von Geschlechtszellen

05.08.2011
Bei der Entstehung von Keimzellen, beim Menschen etwa Spermien und Eizellen, werden Chromosomen vielfach gebrochen und neu zusammengefügt.

Ein Forschungsteam um Franz Klein, Professor für Genetik an den Max F. Perutz Laboratories der Universität Wien, hat diesen Prozess mithilfe modernster Technologie mit Auflösung im Nanometer-Bereich untersucht. Die überraschenden Ergebnisse zum Mechanismus der Meiose werden in der aktuellen Ausgabe der renommierten Fachzeitschrift CELL veröffentlicht.


Modell der Nanowelt – ein Chromosomenabschnitt mit DNA-brechenden Maschinen. Ringförmige Moleküle halten die Schwesterchromosomen (gelb und rot) zusammen und die DNA-Schlaufen in Form. Zwischen den DNA-Schlaufen an der Chromosomenachse sind zwei Maschinen verankert, eine hält ein soeben gebrochenes Stück DNA. Illustration: Franz Klein

Es gibt keine sexuelle Fortpflanzung ohne Meiose, denn nur bei dieser speziellen Zellteilung entstehen Keimzellen. Dabei teilt sich eine Zelle so, dass Tochterzellen mit einfachem, statt dem üblichen doppelten Chromosomensatz entstehen. Verschmilzt ein Spermium mit einer Eizelle bei der Befruchtung, so entsteht dadurch ein Embryo. Dessen Zellen haben wieder den doppelten Chromosomensatz.

Rätselhafte Meiose

In jeder menschlichen Zelle gibt es 46 Chromosomen, von denen je 23 von der Mutter und 23 vom Vater stammen. Werden Keimzellen produziert, wird die Halbierung unter anderem dadurch erreicht, dass aus je einem mütterlichen und einem väterlichen Chromosom ein einziges Tochterchromosom hergestellt wird – die sogenannte Rekombination. "Die Meiose ist ein rätselhafter Prozess. Es ist erstaunlich, dass väterliche und mütterliche Chromosomen einander überhaupt treffen", erklärt Franz Klein vom Department für Chromosomenbiologie der Universität Wien.

"Vor dem Zusammenpuzzeln ist jedes der 46 Chromosomen schon repliziert und bewegt sich wie ein siamesischer Zwilling mit seinem Schwesternchromosom durch den Zellkern. In allen anderen Körperzellen würden Chromosomen ausschließlich mit der eng verbundenen Schwester interagieren und sich austauschen. Das wäre aber für die Keimzellenbildung nicht genug, denn nur das Zusammentreffen der elterlichen Chromosomen garantiert, dass die entstehenden Keimzellen die richtige Anzahl an Chromosomen besitzen", so Klein.

Nanoblick aufs Chromosom

Franz Klein und seine Forschungsgruppe haben Teile jener winzigen, DNA-brechenden Proteinmaschine untersucht, die die Rekombination auslöst. Dazu erstellten sie hochauflösende Landkarten der Chromosomen und zeichneten die Landeplätze dieser Proteine ein. "Dank 'DNA-Mikrochip-Technologie' erreichen wir eine Auflösung im Nanometer-Bereich und erhalten so völlig neue Einblicke", sagt Klein. So stellten die ForscherInnen überrascht fest, dass die DNA-brechenden Komplexe nicht wie andere Proteinmaschinen von Chromosom zu Chromosom schwimmen, sondern in den Chromosomen selbst verankert sind.

Wegwerfmaschinen

Wie bereits entstandene Brüche verhindern, dass in ihrer Umgebung weitere Brüche entstehen, war eines der ungeklärten Rätsel. Frühere Forschung hatte gezeigt, dass jede der DNA-brechenden Nanomaschinen nur einmal funktioniert. "Da wir nun wissen, dass sie fix verankert ist, ist klar, warum in einer bestimmten Gegend nur ein Bruch entstehen kann. Die lokale Maschine ist aufgebraucht und andere Maschinen sitzen an anderen Chromosomenstellen fest", erklärt der Genetiker.

Wenn Chromosomen nicht "in Form" sind

Gesunde Chromosomen können geordnete DNA-Schlaufen ausbilden, die in der Meiose durch eine Proteinachse verbunden sind. Durch fehlerhafte Gene verlieren Chromosomen diese Form. "Niemand hat bisher verstanden, wieso die Form der Chromosomen die Arbeit der DNA-brechenden Maschinen bestimmt. Wir wissen nun, dass die Maschinen zwischen den Schlaufen an der Chromosomenachse ankern müssen. Verändert sich das Schlaufenmuster, arbeiten die Maschinen an anderen Stellen – oder gar nicht mehr", sagt Klein.

Schwesterlicher Übereifer

Entlang der Chromosomenachse, wo die DNA-brechenden Maschinen verankert sind, hängen die Schwesterchromosomen wie siamesische Zwillinge zusammen. Obwohl die Schwester aufgrund ihrer Nähe die nächstgelegene Reparaturhelferin ist, mischt sie sich in die Reparatur der Brüche in der Meiose nicht ein.

Das Besondere an der Meiose ist die Ausbildung einer Rekombinationsverbotszone an der Chromosomenachse. "Wir denken, dass die DNA-brechenden Maschinen deswegen an der Achse verankert sind, damit die DNA-Brüche direkt in der Rekombinationsverbotszone entstehen. Denn dies lockt zunächst das Schwesterchromosom an, welches von einem gebrochenen DNA-Ende in der Rekombinationsverbotszone gehalten wird, während sich das andere DNA-Ende löst, um das väterliche Chromosom zu finden."

"Wir können vieles von diesem Szenario beweisen – am Wichtigsten ist jedoch unsere Beobachtung, dass das Schwesterchromosom alle Rekombination an sich reißt, wenn der von uns entdeckte Verankerungsmechanismus der Bruchmaschine defekt ist. Das zeigt, dass die Verankerung hilft, die Schwester unter Kontrolle zu halten. Gelingt das nicht, ist das Ergebnis des schwesterlichen Übereifers Tod oder Missbildung der aus den defekten Keimzellen entstehenden Embryos", so Franz Klein.

Max F. Perutz Laboratories

Die Max F. Perutz Laboratories sind ein 2005 gegründetes Joint-Venture der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. An den MFPL forschen über 60 Arbeitsgruppen im Bereich Molekularbiologie. Seit 2007 leitet der Biochemiker Graham Warren das Institut.

Förderung

Die nun publizierte Arbeit wurde im Rahmen eines Sonderforschungsbereichs (F34-"Dynamic Chromosomes") des FWF gefördert. Sieben Forschungsgruppen des MFPL und des IMP arbeiten bei diesem Großprojekt gemeinsam an der Lösung von Problemen der Chromosomenbiologie. Koordination: Franz Klein und Jan Michael Peters, diesjähriger Wittgenstein-Preisträger.

Publikation
Spo11-Accessory Proteins Link Double-Strand Break Sites to the Chromosome Axis in Early Meiotic Recombination (Silvia Panizza, Marco A. Mendoza,Marc Berlinger, Lingzhi Huang, Alain Nicolas, Katsuhiko Shirahige, Franz Klein). In: Cell, Volume 146, Issue 3, 5 August 2011.
DOI 10.1016/j.cell.2011.07.003
Abstract: http://www.cell.com/abstract/S0092-8674%2811%2900758-6
Wissenschaftlicher Kontakt
Ao. Univ.-Prof. Dr. Franz Klein
Max F. Perutz Laboratories
1030 Wien, Dr. Bohr-Gasse 9
T +43-1-4277-562 20
franz.klein@univie.ac.at
Rückfragehinweis
Georg Bauer
Communications
Max F. Perutz Laboratories
1030 Wien, Dr.-Bohr-Gasse 9
T: +43-1-4277-240 03
georg.bauer@mfpl.ac.at

Alexander Dworzak | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte