Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zu Defekt bei Leukämie

10.02.2014
Meinrad Busslinger vom Institut für Molekulare Pathologie (IMP) erforscht, wie aus blutbildenden Stammzellen des Immunsystems reife B-Zellen entstehen.

Erstmals konnte er mit seiner Gruppe nun molekulare Details zur Funktion des Ikaros-Gens in der frühen B-Zellentwicklung liefern. Eine Mutation in Ikaros verursacht einen frühen Entwicklungs-Stopp und verhindert somit die Entstehung von reifen B-Zellen.


Eine Illustration zum unentgeltlichen Abdruck in Zusammenhang mit dieser Aussendung finden Sie unter: http://www.imp.ac.at/pressefoto-Ikaros
Legende: Querschnitt durch das Knochenmark einer Maus, der das Ikaros-Protein in B-Zellen fehlt. In Abwesenheit von Ikaros kann ein wichtiger Kontrollpunkt nicht überschritten werden, wodurch die frühe B-Zellentwicklung in einem anormalen „Pro-B“ Zellstadium arretiert wird. Durch Färbung der Schnitte wurden die arretierten Pro-B Zellen (grün), myeloische Zellen (rot) und Zellkerne (blau) sichtbar gemacht. Copyright: IMP

Die Zellen verharren in einem Entwicklungsstadium, das dem von menschlichen B-Zellen aus bestimmten Leukämien entspricht. Die Ergebnisse der Studie sind in der Advance Online Ausgabe von Nature Immunology nachzulesen (doi; 10.1038/ni.2828).

Das Immunsystem ist ein komplexes System aus Organen, Zellen und Botenstoffen, das den menschlichen Organismus vor schädlichen Eindringlingen, aber auch vor fehlerhaften körpereigenen Zellen schützt. Es gibt zwei grundlegend verschiedene Mechanismen der Immunabwehr - die angeborene und die erworbene Abwehr. Die Zellen des erworbenen Immunsystems erkennen spezifische Strukturen der Angreifer und können gezielte Abwehrmechanismen gegen diese entwickeln. Die B- und T-Zellen aus der Gruppe der weißen Blutkörperchen sind seine wesentlichen Elemente.

Rolle von Ikaros in B-Zellen kein Mythos mehr

B-Zellen reifen im Knochenmark heran. Die schrittweise Entwicklung einer Stammzelle zu einer B-Zelle wird durch bestimmte Proteine, sogenannte Transkriptionsfaktoren, genau gesteuert. „Wir kennen schon einige Transkriptionsfaktoren, die eine zentrale Rolle bei der Bildung der B-Zellen spielen. Mit Pax5 haben wir beispielsweise einen Regulator entdeckt, der das B-Zellprogramm anwirft und gleichzeitig andere Entwicklungswege unterdrückt“, erklärt Busslinger. “Aber vom Transkriptionsfaktor Ikaros wussten wir bisher nicht, was er in der frühen B-Zellentwicklung genau macht“.

Die Forscher untersuchten für ihre Studie Mäuse, in denen Ikaros spezifisch in einem frühen Stadium der B-Zellentwicklung entfernt wurde. Sie fanden heraus, dass das Fehlen von Ikaros frühe B-Zellen in einem anormalen „Pro-B“ Zellstadium zurückhielt und ihre weitere Entwicklung blockierte. Zellen ohne Ikaros konnten bestimmte Signale nicht mehr korrekt weiterleiten. Sie hafteten außerdem fester als normale Zellen am Untergrund und wanderten verlangsamt in Richtung eines anziehenden Botenstoffes.

Europäische Förderung ermöglicht umfangreiche Analysen

Die systematische Analyse von Transkriptionsfaktoren wurde Meinrad Busslinger durch einen „ERC Advanced Grant“ aus dem Jahr 2011 ermöglicht - eine der höchst dotierten Förderungen des Europäischen Forschungsrates. Für die Studien verwendet sein Team die Technologie des Biotin-Taggings, um Transkriptionsfaktoren mit einem „molekularen Etikett“ zu versehen. Das erleichtert es, die Proteine aus B-Zellen von Mäusen zu isolieren. Obwohl die Arbeiten äußerst aufwendig sind, hat Busslinger mit seinen Mitarbeitern bereits an die zehn Transkriptionsfaktoren „etikettiert“ und analysiert. Bei den meisten Faktoren führte die Methode zum Erfolg, wie auch bei Ikaros. Auf diese Weise konnten die Forscher grundlegende Erkenntnisse zur molekularen Wirkungsweise von Ikaros gewinnen und eine große Anzahl an Genen in frühen B-Zellen bestimmen, die von diesem Faktor kontrolliert werden.

Auffallende Ähnlichkeit mit menschlichen Tumorzellen

Ikaros ist ein sogenanntes Tumor-Suppressor Gen und schützt die Zellen unter normalen Umständen davor, zu Krebszellen zu werden. Geht die volle Funktion des Gens verloren, kann das zur Entstehung von Tumoren führen. Eine bestimmte Form von Leukämie beim Menschen mit der Bezeichnung „B-ALL“ wird mit Ikaros-Defekten in Verbindung gebracht. Meist sind daran jedoch noch weitere genetische Veränderungen beteiligt. Wie bei den Mäusen mit dem mutierten Ikaros-Gen sind auch die B-Zellen mancher B-ALL Patienten an einem frühen Kontrollpunkt der B-Zellentwicklung arretiert.

Aufgrund der auffallenden Ähnlichkeit des Defekts im Mausmodell mit menschlichen Tumorzellen kann diese Studie helfen, die Entstehung von Leukämie-Erkrankungen auf molekularer Ebene zu verstehen. In weiterer Folge könnten die Erkenntnisse zur Entwicklung vorbeugender oder therapeutischer Maßnahmen bei Blutkrebs beitragen.

Original-Publikation

T.A. Schwickert, H. Tagoh, S. Gültekin, A. Dakic, E. Axelsson, M. Minnich, A. Ebert, B. Werner, M. Roth, L. Cimmino, RA Dickins, J. Zuber, M. Jaritz and M. Busslinger. „Stage-specific control of early B cell development by the transcription factor Ikaros”, Nature Immunology 15, doi; 10.1038/ni.2828.

Finanziert wurde diese Arbeit von Boehringer Ingelheim, einem ERC Grant der EU, der Österreichischen Initiative GEN-AU des Bundesministeriums für Wissenschaft und Forschung und durch eine EMBO-Förderung.

Über Meinrad Busslinger

Meinrad Busslinger wurde 1952 in der Schweiz geboren. Er studierte Biochemie an der ETH Zürich und schloss mit einem Doktorat in Molekularbiologie an der Universität Zürich ab. Nach einem Forschungsaufenthalt in London war er vier Jahre lang Gruppenleiter an der Universität Zürich. 1987 berief ihn Max Birnstiel als Senior Scientist an das neu gegründete IMP. Seit 1993 leitet er das internationale Doktorandenprogramm des Vienna Biocenter. 2013 wurde er stellvertretender Direktor des IMP. Meinrad Busslinger ist Ao. Professor an der Universität Wien, wirkliches Mitglied der ÖAW und Director of Academic Affairs am IMP. Er ist Autor von über 160 Publikationen und Mitglied im redaktionellen Beirat mehrer wissenschaftlicher Journale. Seine Forschungsleistungen wurden 2001 mit dem Wittgensteinpreis ausgezeichnet und 2010 mit der Virchow­Medaille der Universität Würzburg.

Über das IMP

Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.

Rückfragehinweis

Dr. Heidemarie Hurtl
Communications
IMP-Forschungsinstitut für Molekulare Pathologie
Dr. Bohr-Gasse 7
A 1030 Wien
Tel. +43 (0)1 79730-3625
E-mail: hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten