Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zur Bewegung molekularer Motoren: Mini-Transporter auf Abwegen

27.04.2012
Kinesine übernehmen in unseren Zellen eine lebenswichtige Funktion: Die kleinen Laufmaschinen transportieren entlang langer Proteinfasern wichtige Substanzen und sorgen für eine effektive Infrastruktur.
Biophysiker der Technischen Universität München (TUM) und der Ludwig Maximilians Universität München (LMU) haben nun herausgefunden, dass manche Transporter beim Laufen ähnlich wie Autos auf einer mehrspurigen Autobahn auch die Spur wechseln können. Über den molekularen Mechanismus dieses bislang nicht bekannten Phänomens berichten die Forscher in der aktuellen Ausgabe des Fachmagazins „Molecular Cell“.

Molekulare Motoren sind der Schlüssel zur Entwicklung höherer Lebewesen. Entlang langer Proteinfasern transportieren sie Proteine, Signalmoleküle, Organellen oder sogar ganze Chromosomen gezielt von einem Ort der Zelle zum anderen. Ähnlich wie Lastwagen auf Autobahnen sind ständig Tausende der kleinen Motorproteine gleichzeitig unterwegs – ein hochkoordinierter und äusserst schneller Transport. Nur mit dieser höchst effektiven Infrastruktur konnten sich größere, komplexere Zellen und vielzellige Organismen bilden – eine Fähigkeit die beispielsweise Bakterien fehlt, da diese weder molekulare Motoren noch ein Cytoskelett besitzen.

Eine besondere Klasse molekularer Motoren sind die Kinesine. Sie bestehen aus zwei miteinander verdrillten Eiweißketten. Jede Kette besitzt einen Kopf, der an der Oberfläche des Mikrotubulus andocken kann, eine Halsdomäne sowie eine Stiel- und eine Schwanzdomäne, an deren Ende die Fracht angehängt wird. Das Kinesin bewegt sich, indem es abwechselnd einen Kopf vor den anderen setzt. Das erste umfassend erforschte Kinesin ist das Kinesin-1, das eine Vielzahl von aufeinanderfolgenden Schritten ausführt ohne sich vom Mikrotubulus abzulösen. Dabei bewegt es sich auf seinem langen Weg exakt geradeaus und bleibt dabei stets auf einer einzigen Faser des Mikotubulus, der sich aus 13 röhrenförmig angeordneten Einzelfasern zusammensetzt.

Wissenschaftler um Zeynep Ökten, Arbeitsgruppenleiterin am Lehrstuhl für Biophysik der Technischen Universität München und Melanie Brunnbauer, Doktorandin am Lehrstuhl für Biophysik, haben nun erstmals demonstriert, daß Kinesine während des Transports auch ihre Spur wechseln können. Die Wissenschaftlerinnen haben die Stelle im Kinesin-Protein identifiziert, die bestimmt ob ein Kinesintyp geradeaus läuft oder sich spiralförmig bewegt. Es ist ein Strukturelement der Halsdomäne. „Ist die Halsregion stabil, haben die beiden Köpfe des Kinesins nur eine geringe Reichweite. Das Kinesin kann keine Seitenschritte machen und läuft geradeaus“, sagt Ökten. „Destabilisiert man jedoch die verantwortliche Region, vergrößert sich die Reichweite der Köpfe und das Motorprotein kann die Faser wechseln und sich spiralförmig um den Mikrotubulus herum bewegen.“

Um die neue Erkenntnis zu überprüfen bauten die Wissenschaftlerinnen bestimmte Aminosäurereste in die verantwortliche Region ein, eine Art molekularer Schalter, mit dem sie die Reichweite der beiden Köpfe regulieren können. Das Ergebnis war deutlich: Destabilisierten sie die Halsregion des Kinesin-1 Motors und vergrößerten so die Reichweite der beiden Köpfe, geriet das sonst so vorbildlich geradeaus laufende Kinesin-1 plötzlich von seiner Bahn und lief spiralförmig. Ahmten sie durch eine chemische Querverbindung eine stabile Halsregion nach, konnten sie das Protein wieder dazu bringen geradeaus zu laufen.

Kinesine
Bild: Melanie Brunnbauer / TUM

Zu den neuen Ergebnissen gelangten Ökten und Brunnbauer durch einen einzigartigen Versuchsaufbau: Sie brachten zwei 3 Mikrometer große Kunststoffperlen in eine Lösung ein und fixierten jede mit einem Laserstrahl, einer sogenannten „optischen Pinzette“. Dann legten sie in Präzisionsarbeit ein Mikrotubulusstück dazwischen. Im letzten Schritt fixierten sie ein mit Motorproteinen eines bestimmten Kinesin-Typs umhülltes weiteres Kügelchen ebenfalls mit einem Laserstrahl und setzten es vorsichtig auf den Mikrotubulus auf.

Sobald sie nun den dritten Laserstrahl deaktivierten lief das Motorprotein los und die Wissenschaftlerinnen konnten den Weg des Moleküls unter dem Mikroskop live mitverfolgen. „Auf diese Weise konnten wir erstmals die Bewegung eines Motortyps direkt beobachten“, erklärt Ökten. „Als wir zum ersten Mal die trudelnde Bewegung eines Kinesin-2 Proteins sahen, lachten wir alle – die Bewegung war so klar und deutlich, man musste einfach nur hinschauen und alle Zweifel waren verflogen.“ Dieser Versuchsaufbau erlaubt den molekularen Motoren sich frei zu bewegen und kommt so den realen Verhältnissen in der Zelle sehr viel näher als frühere Untersuchungsmethoden.

Mit dem neuen Versuchsaufbau untersuchten Ökten und Brunnbauer die Laufbahnen einer ganzen Reihe verschiedener Kinesin-2 Proteine aus unterschiedlichen Organismen – mit überraschendem Ergebnis: Entgegen der bisher in der Wissenschaft vorherrschenden Annahme, dass sich Kinesine typischer Weise geradeaus bewegen, zeigten fast alle Kinesine Spiralbewegungen, in vielfältigen Variationen. „Dies zeigt uns, dass die Spiralbewegung in der Natur keineswegs eine Ausnahme ist, sondern die Regel“, erklärt Ökten. „Man sollte sich vielmehr fragen, warum die Evolution überhaupt eine Geradeausbewegung hervor gebracht hat, wie wir sie beim Kinesin-1 beobachten können. Das ist wirklich außergewöhnlich.“ In weiteren Forschungen möchten die Wissenschaftler um Ökten und Brunnbauer den Sinn der unterschiedlichen Bewegungsarten genauer untersuchen.

Die Forschung wurde gefördert aus Mitteln der Deutschen Forschungsgemeinschaft (DFG, SFB 863). Einen besonderen Dank sprechen die Autoren in der Publikation auch Brunnbauers kleinem Sohn und dessen Babysitterin aus. Im Arbeitskreis der Biophysik an der TU München fand Melanie Brunnbauer die Flexibilität und Unterstützung, um ihre Arbeit auch nach der Geburt ihres Kindes fortzuführen. Ihre erfolgreiche Forschungsarbeit ist ein Beleg dafür, dass Familie und Beruf auch in der molekularbiologischen Forschung gut vereinbar sind – wenn die Voraussetzungen stimmen.

Originalpublikation:
Torque Generation of Kinesin Motors Is Governed by the Stability of the Neck Domain, Melanie Brunnbauer, Renate Dombi, Thi-Hieu Ho, Manfred Schliwa, und Zeynep Ökten, Molecular Cell (2012), doi:10.1016/j.molcel.2012.04.005

Kontakt:
Dr. Zeynep Ökten
Physik Department E22
Technische Universität München
James-Franck-Str. 1
85748 Garching
Tel.: +49 89 2180 75898
E-Mail: zoekten@ph.tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufräumen? Nicht ohne Helfer
19.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie