Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse zur Bewegung molekularer Motoren: Mini-Transporter auf Abwegen

27.04.2012
Kinesine übernehmen in unseren Zellen eine lebenswichtige Funktion: Die kleinen Laufmaschinen transportieren entlang langer Proteinfasern wichtige Substanzen und sorgen für eine effektive Infrastruktur.
Biophysiker der Technischen Universität München (TUM) und der Ludwig Maximilians Universität München (LMU) haben nun herausgefunden, dass manche Transporter beim Laufen ähnlich wie Autos auf einer mehrspurigen Autobahn auch die Spur wechseln können. Über den molekularen Mechanismus dieses bislang nicht bekannten Phänomens berichten die Forscher in der aktuellen Ausgabe des Fachmagazins „Molecular Cell“.

Molekulare Motoren sind der Schlüssel zur Entwicklung höherer Lebewesen. Entlang langer Proteinfasern transportieren sie Proteine, Signalmoleküle, Organellen oder sogar ganze Chromosomen gezielt von einem Ort der Zelle zum anderen. Ähnlich wie Lastwagen auf Autobahnen sind ständig Tausende der kleinen Motorproteine gleichzeitig unterwegs – ein hochkoordinierter und äusserst schneller Transport. Nur mit dieser höchst effektiven Infrastruktur konnten sich größere, komplexere Zellen und vielzellige Organismen bilden – eine Fähigkeit die beispielsweise Bakterien fehlt, da diese weder molekulare Motoren noch ein Cytoskelett besitzen.

Eine besondere Klasse molekularer Motoren sind die Kinesine. Sie bestehen aus zwei miteinander verdrillten Eiweißketten. Jede Kette besitzt einen Kopf, der an der Oberfläche des Mikrotubulus andocken kann, eine Halsdomäne sowie eine Stiel- und eine Schwanzdomäne, an deren Ende die Fracht angehängt wird. Das Kinesin bewegt sich, indem es abwechselnd einen Kopf vor den anderen setzt. Das erste umfassend erforschte Kinesin ist das Kinesin-1, das eine Vielzahl von aufeinanderfolgenden Schritten ausführt ohne sich vom Mikrotubulus abzulösen. Dabei bewegt es sich auf seinem langen Weg exakt geradeaus und bleibt dabei stets auf einer einzigen Faser des Mikotubulus, der sich aus 13 röhrenförmig angeordneten Einzelfasern zusammensetzt.

Wissenschaftler um Zeynep Ökten, Arbeitsgruppenleiterin am Lehrstuhl für Biophysik der Technischen Universität München und Melanie Brunnbauer, Doktorandin am Lehrstuhl für Biophysik, haben nun erstmals demonstriert, daß Kinesine während des Transports auch ihre Spur wechseln können. Die Wissenschaftlerinnen haben die Stelle im Kinesin-Protein identifiziert, die bestimmt ob ein Kinesintyp geradeaus läuft oder sich spiralförmig bewegt. Es ist ein Strukturelement der Halsdomäne. „Ist die Halsregion stabil, haben die beiden Köpfe des Kinesins nur eine geringe Reichweite. Das Kinesin kann keine Seitenschritte machen und läuft geradeaus“, sagt Ökten. „Destabilisiert man jedoch die verantwortliche Region, vergrößert sich die Reichweite der Köpfe und das Motorprotein kann die Faser wechseln und sich spiralförmig um den Mikrotubulus herum bewegen.“

Um die neue Erkenntnis zu überprüfen bauten die Wissenschaftlerinnen bestimmte Aminosäurereste in die verantwortliche Region ein, eine Art molekularer Schalter, mit dem sie die Reichweite der beiden Köpfe regulieren können. Das Ergebnis war deutlich: Destabilisierten sie die Halsregion des Kinesin-1 Motors und vergrößerten so die Reichweite der beiden Köpfe, geriet das sonst so vorbildlich geradeaus laufende Kinesin-1 plötzlich von seiner Bahn und lief spiralförmig. Ahmten sie durch eine chemische Querverbindung eine stabile Halsregion nach, konnten sie das Protein wieder dazu bringen geradeaus zu laufen.

Kinesine
Bild: Melanie Brunnbauer / TUM

Zu den neuen Ergebnissen gelangten Ökten und Brunnbauer durch einen einzigartigen Versuchsaufbau: Sie brachten zwei 3 Mikrometer große Kunststoffperlen in eine Lösung ein und fixierten jede mit einem Laserstrahl, einer sogenannten „optischen Pinzette“. Dann legten sie in Präzisionsarbeit ein Mikrotubulusstück dazwischen. Im letzten Schritt fixierten sie ein mit Motorproteinen eines bestimmten Kinesin-Typs umhülltes weiteres Kügelchen ebenfalls mit einem Laserstrahl und setzten es vorsichtig auf den Mikrotubulus auf.

Sobald sie nun den dritten Laserstrahl deaktivierten lief das Motorprotein los und die Wissenschaftlerinnen konnten den Weg des Moleküls unter dem Mikroskop live mitverfolgen. „Auf diese Weise konnten wir erstmals die Bewegung eines Motortyps direkt beobachten“, erklärt Ökten. „Als wir zum ersten Mal die trudelnde Bewegung eines Kinesin-2 Proteins sahen, lachten wir alle – die Bewegung war so klar und deutlich, man musste einfach nur hinschauen und alle Zweifel waren verflogen.“ Dieser Versuchsaufbau erlaubt den molekularen Motoren sich frei zu bewegen und kommt so den realen Verhältnissen in der Zelle sehr viel näher als frühere Untersuchungsmethoden.

Mit dem neuen Versuchsaufbau untersuchten Ökten und Brunnbauer die Laufbahnen einer ganzen Reihe verschiedener Kinesin-2 Proteine aus unterschiedlichen Organismen – mit überraschendem Ergebnis: Entgegen der bisher in der Wissenschaft vorherrschenden Annahme, dass sich Kinesine typischer Weise geradeaus bewegen, zeigten fast alle Kinesine Spiralbewegungen, in vielfältigen Variationen. „Dies zeigt uns, dass die Spiralbewegung in der Natur keineswegs eine Ausnahme ist, sondern die Regel“, erklärt Ökten. „Man sollte sich vielmehr fragen, warum die Evolution überhaupt eine Geradeausbewegung hervor gebracht hat, wie wir sie beim Kinesin-1 beobachten können. Das ist wirklich außergewöhnlich.“ In weiteren Forschungen möchten die Wissenschaftler um Ökten und Brunnbauer den Sinn der unterschiedlichen Bewegungsarten genauer untersuchen.

Die Forschung wurde gefördert aus Mitteln der Deutschen Forschungsgemeinschaft (DFG, SFB 863). Einen besonderen Dank sprechen die Autoren in der Publikation auch Brunnbauers kleinem Sohn und dessen Babysitterin aus. Im Arbeitskreis der Biophysik an der TU München fand Melanie Brunnbauer die Flexibilität und Unterstützung, um ihre Arbeit auch nach der Geburt ihres Kindes fortzuführen. Ihre erfolgreiche Forschungsarbeit ist ein Beleg dafür, dass Familie und Beruf auch in der molekularbiologischen Forschung gut vereinbar sind – wenn die Voraussetzungen stimmen.

Originalpublikation:
Torque Generation of Kinesin Motors Is Governed by the Stability of the Neck Domain, Melanie Brunnbauer, Renate Dombi, Thi-Hieu Ho, Manfred Schliwa, und Zeynep Ökten, Molecular Cell (2012), doi:10.1016/j.molcel.2012.04.005

Kontakt:
Dr. Zeynep Ökten
Physik Department E22
Technische Universität München
James-Franck-Str. 1
85748 Garching
Tel.: +49 89 2180 75898
E-Mail: zoekten@ph.tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften