Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse über Beta-Zellen und Insulinresistenz

08.01.2014
Neue Erkenntnisse über die Regulation der Insulinproduktion des Körpers bei Insulinresistenz, Ursache für die Entstehung von Diabetes Typ-2, haben Forscher des Max-Delbrück-Centrums (MDC) Berlin-Buch gewonnen.

Sudhir G. Tattikota, Thomas Rathjen und Dr. Matthew Poy identifizierten einige Komponenten eines Signalwegs, die den Beta-Zellen der Bauchspeicheldrüse helfen, auf den Insulinbedarf des Körpers flexibel zu reagieren.

Erstmals konnten sie damit bei übergewichtigen Mäusen zeigen, wie die insulinproduzierenden Beta-Zellen diesen microRNA (miRNA)-Signalweg nutzen, um Zellwachstum und die Ausschüttung von Insulin zu steuern (Cell Metabolism, http://dx.doi.org/10.1016/j.cmet.2013.11.015)*.

Insulin ist ein lebenswichtiges Hormon, produziert von den Beta-Zellen der Bauchspeicheldrüse. Insulin sorgt dafür, dass die Muskel- und Fettzellen den aus der Nahrung im Blut entstandenen Zucker (Glukose) aufnehmen und als Energielieferant nutzen. Nehmen diese Zellen das Insulin nur noch reduziert auf, spricht die Medizin von Insulinresistenz.

Da alle Zellen des Körpers Glukose als Energielieferant benötigen, passen sich die Beta-Zellen dem vermehrten Insulinbedarf des Körpers an. Sie vermehren sich und produzieren jetzt kontinuierlich Insulin. Sie halten damit die Blutzucker- und Insulinwerte im Gleichgewicht. Aber irgendwann können die Beta-Zellen mit dem erhöhten Insulinbedarf nicht mehr Schritt halten und das Gleichgewicht von Blutzucker und Insulin gerät aus dem Lot. Das ist ein schleichender Prozess, der über Jahre unbemerkt von statten gehen kann und letztlich zur Entstehung von Diabetes Typ-2 führt.

Die MDC-Forscher wollten wissen, wie die Beta-Zellen der Bauchspeicheldrüse ihre Vermehrung und die Ausschüttung von Insulin bei sich änderndem Insulinbedarf steuern. In den Mittelpunkt ihrer Forschung stellten sie dabei den sogenannten microRNA (miRNA)-Signalweg „Neuere Studien haben gezeigt, dass der miRNA-Signalweg bei metabolischem Stress wichtig ist, um die Genexpression zu regulieren“, erläutert Dr. Poy. „Auch ist bekannt, dass dieser Signalweg beim Wachstum der Beta-Zellen eine wichtige Rolle spielt, auch wenn sein Anteil daran noch unklar ist.“

MiRNAs sind kleine Bruchstücke von Ribonukleinsäure (englisch abgekürzt RNA), einer chemischen Verwandten der DNA, die aus rund 22 Bausteinen bestehen. Erst in den vergangenen zehn Jahren haben Forscher entdeckt, dass miRNAs praktisch in allen Zellen eine Rolle spielen. Obwohl ihre genaue Funktion noch immer offen ist, ist eines geklärt – sie sind immens wichtig, um die Genexpression zu regulieren. Das heißt, miRNA bestimmen, welche Proteine und wie viel davon die verschiedenen Zellen produzieren, in diesem Fall das Insulin.

Sudhir G. Tattikotta, Thomas Rathjen und Dr. Poy konnten jetzt zwei verschiedene miRNAs identifizieren, die unterschiedliche Aufgaben im Insulinstoffwechsel haben, darunter die miRNA-184. Die Forscher konnten zeigen, dass miRNA-184 stillgelegt wird, wenn sich eine Insulinresistenz entwickelt – und zwar sowohl in Mäusen als auch beim Menschen. Weiter entdeckten die Forscher, dass als Folge der Stilllegung von miRNA-184 in den Beta-Zellen quasi als Notmaßnahme, ein Gen (Ago2) hochreguliert wird. Dieses Gen erleichtert es den Beta-Zellen, sich zu vermehren und verstärkt Insulin auszuschütten. Damit können die Beta-Zellen die Insulinresistenz kompensieren.

In ihrer Studie arbeiteten die Forscher mit stark übergewichtigen Mäusen, die bereits eine Insulinresistenz entwickelt hatten. Extremes Übergewicht ist ein Risikofaktor für Diabetes Typ-2. Schalteten die Forscher in den Beta-Zellen dieser Mäuse das Gen Ago2 aus, ging das Wachstum der Beta-Zellen zurück. „Das beweist, dass Ago2 und der miRNA-Signalpfad in diesem Prozess eine wichtige Rolle spielen“, betonen Dr. Poy und seine Kollegen in ihrer Arbeit.

Fett- und kohlehydratreiche Diät verbessert Ansprechbarkeit auf Insulin
Frühere Studien sowohl mit Mäusen als auch bei Menschen mit Typ-2 Diabetes haben gezeigt, dass eine Diät, die reich an Fett und Kohlehydraten („ketogene Diät“) ist, die Insulinempfindlichkeit der Beta-Zellen verbessert. Vor diesem Hintergrund fütterten die Forscher die übergewichtigen Mäuse mit fett- und kohlehydratreicher Kost und es gelang ihnen damit die Funktion der miRNA-184 wiederherzustellen. Gleichzeitig brachten sie sowohl das Wachstum der Beta-Zellen als auch die Insulinausschüttung unter Kontrolle.

Mit dieser Studie haben die MDC-Forscher gezeigt, dass das Anpeilen von Ago2 durch die miRNA-184 wichtig für die Beta-Zellen ist, sich einem erhöhten Insulinbedarf anzupassen und so eine Insulinresistenz zu kompensieren. „Unsere Beobachtungen über die Auswirkung einer fett- und kohlehydratreichen Diät auf die Funktion der miRNA-184 verknüpfen bisher wenig verstandene Mechanismen miteinander und machen deutlich, wie wichtig es ist, die Rolle von miRNAs bei physiologischem Stress zu untersuchen“, betont Dr. Poy. Er und seine Kollegen hoffen, dass die Erforschung des miRNA-Signalpfads und der kleinen RNAs hilft, besser zu verstehen, wie lebenswichtige Stoffwechselprozesse aufrechterhalten werden und wie ihr Ausfall zur Entstehung von Krankheiten führt.

*Argonaute2 mediates compensatory expansion of the pancreatic -cell

Sudhir G. Tattikota1,12, Thomas Rathjen1,12, Sarah J. McAnulty1, Hans-Hermann Wessels1, Ildem Akerman4, Martijn van de Bunt5, Jean Hausser6, Jonathan L.S. Esguerra7, Anne Musahl1, Amit K. Pandey1, Xintian You1, Wei Chen1, Pedro L. Herrera8, Paul R. Johnson5,9,10, Donal O’Carroll11, Lena Eliasson7, Mihaela Zavolan6, Anna L. Gloyn5,9, Jorge Ferrer4, Ruby Shalom-Feuerstein3, Daniel Aberdam2, and Matthew N. Poy1#

1 Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
2 INSERM U976, University of Paris Diderot, 75475 France
3 Department of Anatomy and Cell Biology, The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
4 Genomic Programming of Beta-cells Laboratory, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
5 Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, OX3 7LJ Oxford, UK
6 Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
7 Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
8 Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
9 NIHR Oxford Biomedical Research Centre, ORH Trust, OCDEM, Churchill Hospital, OX3 7LJ Oxford, UK
10 Nuffield Department of Surgery, University of Oxford, OX3 9DU Oxford, UK
11 European Molecular Biology Laboratory, 00015 Monterotondo Scalo Italy
12 these authors contributed equally
Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie