Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnis zur Muskeldystrophie Typ Duchenne

19.03.2015

Bei der Muskeldystrophie vom Typ Duchenne kommt es zum allmählichen Muskelschwund. Von der Erbkrankheit Betroffene erkranken bereits im Kleinkindalter und sterben als junge Erwachsene, weil Herz- und Atemmuskulatur nicht mehr richtig arbeiten. Bislang ist eine Heilung nicht möglich. 

Forscher des Instituts für Physiologie II der Universität Bonn haben nun mit Kollegen aus Irland entdeckt, dass das Protein Periostin mit der Erkrankung zusammenhängt. Daraus ergeben sich interessante Ansatzpunkte für neuartige Therapien. Die Wissenschaftler stellen ihre Ergebnisse vorab online im Fachjournal „Proteomics“ vor. Die Druckausgabe erscheint demnächst.


Links: Muskeln einer gesunden Maus. Rot gefärbt ist das Muskelstrukturprotein Dystrophin. Rechts: Duchenne-Maus, bei der das wichtige Protein (rot) kaum vorhanden ist. Blau markiert sind Zellkerne.

Aufnahmen: M. Zweyer, Physiologie II/Uni Bonn

Die Duchenne’sche Muskeldystrophie ist eine Erbkrankheit, von der schätzungsweise jeder 5000. Mensch betroffen ist. Bereits im Kleinkindalter kommt es zum Muskelschwund am Becken und an den Oberschenkeln.

Die Erkrankung endet im jungen Erwachsenenalter meist tödlich, weil dann die Herz- und Atemmuskulatur nicht mehr richtig arbeitet. Die Ursache der Erkrankung ist eine erblich bedingte Störung der Produktion des Muskelstrukturproteins Dystrophin. Der Mangel an diesem Protein führt zum Abbau der Muskelfasern, die durch Fett- oder Bindegewebe ersetzt werden.

Starke Narbenbildung erschwert Duchenne-Behandlung

Bisherige gentherapeutische Maßnahmen, dem Dystrophinmangel zu begegnen und damit die Ursache der Krankheit zu heilen, sind nicht sehr erfolgreich. „Offenbar genügt es nicht, nur die Dystrophinproduktion zu fördern“, berichtet Prof. Dr. Dieter Swandulla vom Institut für Physiologie II der Universität Bonn. Mit dem Muskelschwund ist nämlich eine starke Vermehrung des Bindegewebes in Form von Narbenbildung verbunden, die alle Bemühungen, neuen Muskel aufzubauen, zunichte macht.

Das Team um Prof. Swandulla hat nun zusammen mit irischen Forschern der National University of Ireland in Maynooth und der Dublin City University herausgefunden, dass eine starke Vermehrung des Proteins Periostin mit der fortschreitenden Vernarbung bei der Duchenne-Muskeldystrophie in Zusammenhang steht. Die Wissenschaftler untersuchten die Erkrankung an einem speziellen Mausmodell, bei dem es am Zwerchfell zu einem der Duchenne-Dystrophie sehr ähnlichen Muskelschwund kommt. Das Team verglich die Proteinmuster der Duchenne-Mäuse mit einer Kontrollgruppe, die aus gesunden Mäusen bestand.

Das Protein Periostin ist an der Vernarbung entscheidend beteiligt

Hierfür extrahierten die Forscher die Proteine aus dem Zwerchfell, trennten sie voneinander und bestimmten sie analytisch. „Mit diesem Proteomic Profiling konnten wir die Proteine identifizieren, die krankheitsspezifisch verändert waren“, erläutert Prof. Swandulla. Besonders auffällig waren dabei stark erhöhte Werte für das Protein Periostin in den Duchenne-Mäusen. Dieser Befund lege nahe, dass Periostin entscheidend an der Vernarbung der Muskulatur bei der Muskeldystrophie Typ Duchenne beteiligt ist.

Interessanter Ansatzpunkt für neuartige Therapien

Die Wissenschaftler gehen davon aus, dass sie mit diesem Befund einen interessanten Ansatzpunkt für neuartige Therapien gefunden haben. Prof. Swandulla schwebt eine Kombinationstherapie vor: „Wenn es gelingen würde, durch Gentherapie die Produktion des Muskelstrukturproteins Dystrophin anzukurbeln und gleichzeitig die Aktivität des Periostin-codierenden Gens zu hemmen, könnte möglicherweise der Muskelschwund gemildert und parallel dazu die störende Narbenbildung eingedämmt werden.“ Dieser Therapieansatz würde erstmals nicht nur die Ursache, sondern auch die gravierenden Folgeerscheinungen des Muskelschwunds zum Ziel haben und könnte in jedem Stadium der Erkrankung zum Einsatz kommen.

Die Studie wurde von der Irish Higher Education Authority, der Muscular Dystrophy Ireland und der Deutschen Duchenne Stiftung (Aktion Benni & Co e.V.) unterstützt.

Publikation: Label-free mass spectrometric analysis of the mdx-4cv diaphragm identifies the matricellular protein periostin as a potential factor involved in dystrophinopathy-related fibrosis, Journal „Proteomics”, DOI: 10.1002/pmic.201400471, vorab online, die Druckausgabe erscheint demnächst.

Kontakt für die Medien:

Prof. Dr. Dieter Swandulla
Institut für Physiologie II
Universität Bonn
Tel. : 0228/7360101
E-Mail: Dieter.Swandulla@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik