Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einsichten in die Funktionsweise von Antidepressiva

25.11.2015

Wissenschaftler entdecken einen neuen Wirkungsmechanismus von Antidepressiva über das bekannte Stress Protein FKBP51

Wissenschaftler am Max-Planck-Institut für Psychiatrie in München haben einen neuen funktionellen Zusammenhang zwischen epigenetischen Veränderungen und dem gut beschriebenen Risiko-Faktor für Depression FKBP51 identifiziert.


Paroxetin verringert die DNA-Methylierung nur in Anwesenheit von FKBP51.

© MPI für Psychiatrie, 2015

Diese Entdeckung trägt erheblich zum Verständnis der Wirkungsweisen von Antidepressiva bei. So könnte es in Zukunft möglich sein, pharmazeutische Behandlungen auf einzelne Patienten abzustimmen und somit spezifisch die biologischen Ursachen der Krankheit anzugehen.

Dies erhöht die Erfolgsaussichten der Patientenbehandlung und wird die medizinische Versorgung von Millionen bisher behandlungsresistenter Patienten ermöglichen

Drei von zehn Menschen sind im Laufe ihres Lebens von stressbedingter Depression betroffen. Lediglich ein Drittel der Betroffenen sprechen auf Verabreichung von Medikamenten an. Diese niedrige Erfolgsrate lässt sich damit erklären, dass die Wirkungsmechanismen der Antidepressiva nach wie vor unzureichend bekannt sind.

Stress ist ein Risikofaktor für Depressionen. Eine erhebliche Zahl von Komponenten des Stress-Hormon-Systems wurden bereits in Zusammenhang mit erhöhter Erkrankungswahrscheinlichkeit und unterschiedlichem Behandlungserfolg gebracht.

Eines dieser Komponenten ist das Protein FKBP51, welches in der Lage ist, die Affinität von Stresshormonen zu ihren Rezeptoren zu beeinflussen. FKBP51 ist ein gängiger Risikofaktor für stressbedingte Erkrankungen.

Es konnte bereits nachgewiesen werden, dass das Protein den Behandlungserfolg mit Antidepressiva beeinflusst und dass ein Zusammenhang mit erneut auftretenden depressiven Episoden besteht. Eine erfolgreiche Behandlung mit Antidepressiva setzt eine Wiederherstellung des Stresshormonhaushalts voraus, was wiederum von FKBP51 beeinflusst wird.

Wissenschaftler am Max-Planck-Institut für Psychiatrie in München haben nun einen neuen Wirkungsmechanismus dieser Medikamente bei stressbedingten Erkrankungen identifiziert.

Nachgewiesenermaßen kann sich Stress langfristig auf unseren Körper auswirken, indem es das sogenannte „Epigenom“ beeinträchtigt. Epigenetische Faktoren beeinflussen die Genaktivität. Stress kann sich auf den epigenetischen Code eines Genes auswirken, was wiederum die Genaktivität verändern kann. Diese dauerhafte Änderung kann die Entwicklung von depressiven Symptomen hervorrufen. Die Unterbindung dieser lang anhaltenden Mechanismen könnte daher einen vielversprechenden therapeutischen Ansatz gegen Depression darstellen.

In der vorgelegten Studie, so beschreibt der Wissenschaftler Theo Rein, „haben wir den Mechanismus, mit welchem FKBP51 das epigenetische Enzym DNMT1 moduliert, untersucht. Wir sind der Frage nachgegangen, inwieweit die Interaktion zwischen beiden Faktoren den Behandlungserfolg von depressiven Patienten mit Antidepressiva beeinflusst.“

Die Wissenschaftler gingen den Hinweisen nach einer funktionellen Verknüpfung zwischen FKBP51 und dem epigenetischen Enzym DNMT1 in Zellkulturlinien, Mäusen und Menschen nach. Dabei entdeckten sie, dass FKBP51 in der Tat Stress bedingte epigenetische Veränderungen hervorruft.

FKBP51 wirkte sich auf die enzymatische Aktivität von DMNT1 aus was wiederum die allgemeine epigenetische Ordnung beeinträchtigte. „Am interessantesten war der Befund, dass das Antidepressivum Paroxetin die DMNT1 Aktivität nur in Anwesenheit von FKBP51 herabsetzte“ sagt Nils Gassen, der erstgelistete Autor der Studie. Die Entdeckung dieses funktionellen Zusammenhanges zwischen DNMT1 und FKBP51 legt eine neue Rolle für das Molekül nahe, welche sich auf das Epigenom auswirkt und daraus folgend möglicherweise dauerhafte Änderungen des Genoms hervorrufen kann.


Ansprechpartner

Dr. Theo Rein
Project Group Leader

Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-531

E-Mail: theorein@psych.mpg.de


Dr. Anna Niedl
Referentin für Öffentlichkeitsarbeit

Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-263

Fax: +49 89 30622-370

E-Mail: presse@psych.mpg.de


Originalpublikation
Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K, Carrillo-Roa T, Steinbacher J, Preißinger SN, Hoeijmakers L, Knop M, Weber F, Kloiber S, Lucae S, Chrousos GP, Carell T, Ising M, Binder EB, Schmidt MV, Rüegg J and Rein T.

Chaperoning epigenetics: FKBProtein51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine.

Science Signaling (2015)

Dr. Theo Rein | Max-Planck-Institut für Psychiatrie, München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen