Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in die Zellteilung

09.01.2013
Max-Planck-Forscher entwickeln ein minimales biologisches System

Alle Lebewesen bestehen aus Zellen, die aus der Teilung anderer Zellen hervorgegangen sind. Wie dieser wichtige Prozess im Detail funktioniert, ist noch nicht umfassend verstanden.


Motorproteine (rot) binden an Aktinfilamente (grün) – ein erster Schritt zur physischen Teilung einer Zelle.

© MPI für Biochemie / Sven Vogel

Wissenschaftlern am Max-Planck-Institut für Biochemie in Martinsried bei München ist es jetzt gelungen, ein minimales biologisches System zu konstruieren, das wichtige Bestandteile des Zellteilungsapparates zusammenbringt. So konnten die Forscher die biophysikalischen Mechanismen genauer unter die Lupe nehmen.

„Unser Modell könnte helfen, neue Therapien gegen Krankheiten zu entwickeln und zu testen, die auf Fehlern in der Zellteilung beruhen“, hofft Sven Vogel, Wissenschaftler am Institut. Die Ergebnisse der Studie wurden jetzt in dem neuen Fachjournal eLife veröffentlicht.

Die Forscher der Abteilung „Zelluläre und Molekulare Biophysik“ versuchen, die Strukturen einer Zelle mit Hilfe eines Baukastenprinzips zu rekonstruieren. So möchten sie die grundlegenden Mechanismen lebender Systeme Schritt für Schritt nachvollziehen. „Unsere Vision ist, immer mehr Bausteine aus natürlichen und synthetischen Biomolekülen zusammenzufügen, bis wir schließlich die Minimalversion einer Zelle vor uns haben“, sagt Petra Schwille, Direktorin am Max-Planck-Institut für Biochemie. Mit einem solchen Ansatz ist es den Wissenschaftlern jetzt gelungen, den Prozess der Zellteilung genauer zu untersuchen.

Während der Zellteilung müssen zum einen die Erbinformation und das Zellplasma korrekt auf zwei Tochterzellen verteilt werden. Zum anderen müssen die beiden neuentstandenen Zellen physikalisch voneinander getrennt werden. Ein wichtiger Bestandteil dieser Zellteilungsmaschinerie ist der Zellkortex. Diese Schicht sitzt direkt unter der Zellhülle und besteht aus einer dünnen Lage fädiger Proteinketten, sogenannter Aktinfilamente. Während des eigentlichen Teilungsvorgangs üben Motorproteine aus dem Zellinneren Kräfte auf diese Aktinfilamente aus, wodurch sich der Zellkortex zusammenzieht, die Zelle in der Mitte einschnürt und letztendlich teilt.

Die Max-Planck-Forscher haben jetzt einen künstlichen Zellkortex konstruiert, an dem sie die physikalischen Phänomene genauer untersuchen können. Hierfür haben die Wissenschaftler nur die notwendigsten Bestandteile der Zellteilungsmaschinerie kombiniert und so ein künstliches Minimalsystem geschaffen. Ein solches System kann komplexe Prozesse stark vereinfacht darstellen. In der Natur dagegen haben sich Zellen über mehrere Millionen Jahre entwickelt und wurden nicht präzise geplant und konstruiert. Dadurch seien einige Prozesse möglicherweise komplexer als sie sein müssten, so Sven Vogel. „Diese Komplexität macht es oftmals nahezu unmöglich, die Grundmechanismen im Detail zu erforschen“, sagt der Biophysiker.

Mit ihrem Minimalsystem konnten die Wissenschaftler beispielsweise zeigen, dass die Zugabe von Motorproteinen zu dem künstlichen Zellkortex eine Musterbildung auslöst. Außerdem brechen die Motorproteine einzelne Aktinfilamente auseinander und verdichten sie. Die Martinsrieder Forscher sind sich sicher, dass auch in Zukunft künstliche Minimalsysteme einen Beitrag dazu leisten werden, die Mechanismen der Zellteilung im Detail zu verstehen.
Ansprechpartner
Prof. Dr. Petra Schwille,
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2901
E-Mail: schwille@­biochem.mpg.de
Anja Konschak,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824
Fax: +49 89 8578-3777
E-Mail: konschak@­biochem.mpg.de
Originalpublikation
S. Vogel, Z. Petrasek, F. Heinemann, P. Schwille
Myosin Motors Fragment and Compact Membrane-Bound Actin Filaments
eLife, 8. Januar 2013

Prof. Dr. Petra Schwille | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6799555/zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops