Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in die Zellteilung

09.01.2013
Max-Planck-Forscher entwickeln ein minimales biologisches System

Alle Lebewesen bestehen aus Zellen, die aus der Teilung anderer Zellen hervorgegangen sind. Wie dieser wichtige Prozess im Detail funktioniert, ist noch nicht umfassend verstanden.


Motorproteine (rot) binden an Aktinfilamente (grün) – ein erster Schritt zur physischen Teilung einer Zelle.

© MPI für Biochemie / Sven Vogel

Wissenschaftlern am Max-Planck-Institut für Biochemie in Martinsried bei München ist es jetzt gelungen, ein minimales biologisches System zu konstruieren, das wichtige Bestandteile des Zellteilungsapparates zusammenbringt. So konnten die Forscher die biophysikalischen Mechanismen genauer unter die Lupe nehmen.

„Unser Modell könnte helfen, neue Therapien gegen Krankheiten zu entwickeln und zu testen, die auf Fehlern in der Zellteilung beruhen“, hofft Sven Vogel, Wissenschaftler am Institut. Die Ergebnisse der Studie wurden jetzt in dem neuen Fachjournal eLife veröffentlicht.

Die Forscher der Abteilung „Zelluläre und Molekulare Biophysik“ versuchen, die Strukturen einer Zelle mit Hilfe eines Baukastenprinzips zu rekonstruieren. So möchten sie die grundlegenden Mechanismen lebender Systeme Schritt für Schritt nachvollziehen. „Unsere Vision ist, immer mehr Bausteine aus natürlichen und synthetischen Biomolekülen zusammenzufügen, bis wir schließlich die Minimalversion einer Zelle vor uns haben“, sagt Petra Schwille, Direktorin am Max-Planck-Institut für Biochemie. Mit einem solchen Ansatz ist es den Wissenschaftlern jetzt gelungen, den Prozess der Zellteilung genauer zu untersuchen.

Während der Zellteilung müssen zum einen die Erbinformation und das Zellplasma korrekt auf zwei Tochterzellen verteilt werden. Zum anderen müssen die beiden neuentstandenen Zellen physikalisch voneinander getrennt werden. Ein wichtiger Bestandteil dieser Zellteilungsmaschinerie ist der Zellkortex. Diese Schicht sitzt direkt unter der Zellhülle und besteht aus einer dünnen Lage fädiger Proteinketten, sogenannter Aktinfilamente. Während des eigentlichen Teilungsvorgangs üben Motorproteine aus dem Zellinneren Kräfte auf diese Aktinfilamente aus, wodurch sich der Zellkortex zusammenzieht, die Zelle in der Mitte einschnürt und letztendlich teilt.

Die Max-Planck-Forscher haben jetzt einen künstlichen Zellkortex konstruiert, an dem sie die physikalischen Phänomene genauer untersuchen können. Hierfür haben die Wissenschaftler nur die notwendigsten Bestandteile der Zellteilungsmaschinerie kombiniert und so ein künstliches Minimalsystem geschaffen. Ein solches System kann komplexe Prozesse stark vereinfacht darstellen. In der Natur dagegen haben sich Zellen über mehrere Millionen Jahre entwickelt und wurden nicht präzise geplant und konstruiert. Dadurch seien einige Prozesse möglicherweise komplexer als sie sein müssten, so Sven Vogel. „Diese Komplexität macht es oftmals nahezu unmöglich, die Grundmechanismen im Detail zu erforschen“, sagt der Biophysiker.

Mit ihrem Minimalsystem konnten die Wissenschaftler beispielsweise zeigen, dass die Zugabe von Motorproteinen zu dem künstlichen Zellkortex eine Musterbildung auslöst. Außerdem brechen die Motorproteine einzelne Aktinfilamente auseinander und verdichten sie. Die Martinsrieder Forscher sind sich sicher, dass auch in Zukunft künstliche Minimalsysteme einen Beitrag dazu leisten werden, die Mechanismen der Zellteilung im Detail zu verstehen.
Ansprechpartner
Prof. Dr. Petra Schwille,
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2901
E-Mail: schwille@­biochem.mpg.de
Anja Konschak,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie, Martinsried
Telefon: +49 89 8578-2824
Fax: +49 89 8578-3777
E-Mail: konschak@­biochem.mpg.de
Originalpublikation
S. Vogel, Z. Petrasek, F. Heinemann, P. Schwille
Myosin Motors Fragment and Compact Membrane-Bound Actin Filaments
eLife, 8. Januar 2013

Prof. Dr. Petra Schwille | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6799555/zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Parasitenflirt: Molekulare Kamera zeigt Paarungszustand von Bilharziose-Erregern in 3D
19.09.2017 | Justus-Liebig-Universität Gießen

nachricht Ein Traum von einem Schaum
19.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

10. Cottbuser Medienrechtstage zu »Fake News, Hate Speech und Whistleblowing«

18.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungsnachrichten

Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie

19.09.2017 | Förderungen Preise

Simulation von Energienetzwerken für Strom, Gas und Wärme

19.09.2017 | Energie und Elektrotechnik