Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in die Proteinfaltung in Nanosekunden

21.01.2009
Forscher vom Biozentrum der Universität Basel und von der Technischen Universität München haben eine neue Methode entwickelt, um die Dynamik von Proteinen im Zeitbereich von Milliardstelsekunden zu beobachten.

Diese Messungen im Nanosekundenbereich tragen zum besseren Verständnis der grundlegenden Prozesse der Proteinfaltung bei und eröffnen Einblicke, wie Eiweisse ihre räumliche Struktur finden und ändern. Die Forschungsresultate sind in Online-Ausgabe der "Proceedings of the National Academy of Sciences" veröffentlicht.

Ein Protein besteht aus einer Kette von Aminosäuren, die im Prozess der Proteinfaltung eine bestimmte räumliche Struktur einnehmen müssen, um ihre biologische Funktion zu erfüllen. Läuft bei diesem Prozess etwas falsch, kann es zu einer Anhäufung inaktiver Proteine in der Zelle führen und es können Krankheiten wie Alzheimer, die Creutzfeldt-Jakob Krankheit oder die Parkinsonsche Krankheit entstehen.

Die ursprüngliche Struktur eines Proteins ist flexibel und wechselt zwischen verschiedenen Konformationen hin und her. Da solche Konformationsübergänge für die Proteinfunktion oft unerlässlich sind, ist die Dynamik der Molekülbewegungen von Aminosäureketten von grundlegender Bedeutung für die Faltung und Funktion von Proteinen.

Grundlegenden Konformationsänderungen in Proteinen finden innerhalb von Nanosekunden bis Mikrosekunden statt, aber dieser Zeitbereich war bisher experimentell nur sehr begrenzt zugänglich. Thomas Kiefhaber (jetzt TU München), Beat Fierz und Andreas Reiner vom Biozentrum der Universität Basel haben nun eine Methode entwickelt, die Messungen der Molekülbewegungen mit einer zeitlichen Auflösung von unter einer Nanosekunde ermöglicht. Damit konnte zum ersten Mal der Wechsel zwischen verschiedenen Proteinkonformationen in diesem Zeitbereich experimentell untersucht werden.

Die Forscher wählten für ihre Studie das einfachste und häufigste Proteinstrukturelement als Modellsystem, die alpha-Helix. Aber selbst dieses einfache System wurde aufgrund der hohen Komplexität und Geschwindigkeit der Faltungsreaktionen bis heute nicht genau verstanden. Die Forschungsergebnisse der Arbeitsguppe Kiefhaber ermöglichen nun einen genaueren Einblick in die Dynamik von alpha-Helices. Die Untersuchungen zeigen, dass sich eine Helix nicht als Ganzes faltet oder entfaltet, sondern in vielen verschiedenen Zuständen vorliegt, die schnell ineinander übergehen. Solche lokalen Konformationsänderungen sind ortsabhängig und finden im Zeitbereich von 250 Nano- bis 1,5 Mikrosekunden statt. Dabei ist die Dynamik an den Helix-Enden schneller als in der Mitte. Mittels theoretischer Modelle konnten diese Ergebnisse im Detail verstanden werden. Die in der aktuellen Ausgabe der "Proceedings of the National Academy of Sciences" publizierten Forschungsergebnisse sind von grundlegender Bedeutung für das Verständnis der Funktion, Faltung and Fehlfaltung von Proteinen.

Originalbeitrag
Beat Fierz, Andreas Reiner, and Thomas Kiefhaber
Local conformational dynamics in alpha-helices measured by fast triplet transfer
PNAS, published online before print January 8, 2009 | doi: 10.1073/pnas.0808581106
Weitere Auskünfte
Prof. Dr. Thomas Kiefhaber, Chemistry Department and Munich Center for Integrated Protein Science, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching. E-Mail: t.kiefhaber@tum.de

Reto Caluori | idw
Weitere Informationen:
http://www.unibas.ch
http://www.pnas.org/content/early/2009/01/08/0808581106

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie