Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in die Organisation der Plasmamembran

15.07.2015

Wissenschaftler des CNMPB decken die Organisation langlebiger Proteinansammlungen in der Plasmamembran lebender Zellen auf und identifizieren essentielle Schlüsselfaktoren. Veröffentlicht in Nature Communications.

Die Plasmamembran grenzt lebende Zellen gegen ihre Umwelt ab. Sie enthält eine Vielzahl von Proteinen, die Ansammlungen bilden und wichtige Funktionen unter anderem beim Stoffaustausch sowie bei der Zell-Zell-Kommunikation haben.


Metabolische Proteinmarkierung und Isolierung von Sheets der Plasmamembran

cnmpb/saka

Ein Forscherteam um Prof. Dr. Silvio O. Rizzoli vom Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG) hat neue beeindruckende Einblicke in die Organisation der Plasmamembran gewonnen.

Die Erkenntnisse der Forscher: In den langlebigen Proteinansammlungen sind funktionell verwandte Faktoren in ähnlichen Regionen angereichert. Schlüsselfaktor für die Bildung und Stabilisierung solcher Proteinansammlungen ist Cholesterin. Für die Abgrenzung der Ansammlungen ist Aktin, ein Baustein des Zellskeletts, zuständig. Die Forschungsergebnisse wurden veröffentlicht in der Fachzeitschrift „Nature Communications“.

Originalveröffentlichung: Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO (2014) Multiprotein assemblies underlie the mesoscale organization of the plasma membrane. NAT COMMUN, 5: 4509.

„Anders als bisher vermutet, sind die Proteine der Plasmamembran in Clustern organisiert, die nicht zufällig, sondern in definierten Mustern angeordnet vorliegen“, sagt Dr. Sinem Saka, Erst-Autorin der Publikation und Postdoc am Institut für Neuro- und Sinnesphysiologie der UMG. Mit Unterstützung von Wissenschaftlern des Göttinger Max-Planck-Instituts für Biophysikalische Chemie und des LIMES Instituts in Bonn untersuchte das Göttinger Forscherteam die zu Grunde liegenden Mechanismen.

Um simultan alle Proteine in der Plasmamembran betrachten zu können, schleusten die Forscher ein unnatürliches Aminosäureanalogon in die Proteine von Säugerzellen. Kombiniert mit einer Fluoreszenzmarkierung und mittels hoch-auflösender STED-Mikroskopie (STED: stimulated emission depletion) konnten sie so die Proteine in der Plasmamembran sichtbar machen.

FORSCHUNGSERGEBNISSE IM DETAIL

Eine Vielzahl von Proteinen bildet heterogene Proteinreiche Domänen auf der Plasmamembran, die von Proteinarmen Bereichen umgeben sind. Die Anwendung weiterer experimenteller Strategien zur genaueren Charakterisierung der Proteinreichen Areale zeigte überraschend, dass das Muster gegenüber verschiedenen Veränderungen resistent ist.

SCHLÜSSELFAKTOREN

Als Schlüsselfaktor für die Bildung der Multiproteinansammlungen wurde Cholesterin identifiziert. Die Entfernung von Cholesterin von der Plasmamembran verursachte einen vollständigen Zusammenbruch der Proteinansammlungen. Die erneute Zugabe von Cholesterin kehrte diesen Effekt wieder um. Für die Abgrenzung der Areale spielt Aktin, ein wichtiger Bestandteil des Zellskeletts, eine bedeutende Rolle: Wurde Aktin zerstört, vergrößerten sich die Proteinansammlungen, wobei das zugrundeliegende Muster jedoch bestehen blieb.

Innerhalb der Ansammlungen liegen einzelne Proteine im Zentrum oder der Peripherie konzentriert vor. Diese Beobachtung legt nahe, dass funktionelle Protein-Protein-Wechselwirkungen zur Bildung spezialisierter Subdomänen führen. Die Wissenschaftler schließen daraus, dass die Bildung von Proteinansammlungen ein grundlegendes Prinzip der Membranorganisation darstellt. Dabei scheint die Verteilung der meisten Faktoren durch deren spezifische Aktivität beeinflusst zu werden.

Besondere Bedeutung haben diese Erkenntnisse für die Untersuchung der Proteinverteilung in der Membran von Zellen, bei denen z.B. eine Störung der Zell-Zell-Kommunikation vorliegt.

Prof. Dr. Silvio O. Rizzoli leitet seit März 2012 das Institut für Neuro- und Sinnesphysiologie an der Universitätsmedizin Göttingen und ist Mitglied des Göttinger Exzellenzclusters und DFG-Forschungszentrums für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB).

Seine Forschungsschwerpunkte sind die molekularen Prozesse der Signalübertragung zwischen Nervenzellen. Prof. Rizzoli benutzt hochauflösende Lichtmikroskopie, um Transport und Funktion von intrazellulären „Bläschen“, so genannten Vesikeln, in den Synapsen der Nervenzellen zu verstehen. Erst kürzlich wurde Prof. Rizzoli für seine exzellente Forschung von der Europäischen Union mit einem „ERC Consolidator Grant“ ausgezeichnet.

BILDUNTERSCHRIFT: (oben) Für die Markierung zellulärer Proteine werden unnatürliche Aminosäureanaloga in lebende Zellen eingeschleust. Nach Isolierung einzelner Plasmamembransheets durch Ultraschall werden die Aminosäuren an Fluorophore gekoppelt und die Proben mittels super-auflösender Mikroskopie untersucht. (unten) Dreidimensionale Ansicht der Proteinverteilung in der Plasmamembran. Die Entfernung von Cholesterol aus der Membran verursacht einen kompletten Verlust der Membranorganisation. Im Gegensatz dazu führt die Zerstörung von Aktin zu einer Verschmelzung der Proteinansammlungen und zur Bildung größerer Cluster. Abb.: cnmpb/saka

WEITERE INFORMATIONEN


Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Neuro- und Sinnesphysiologie
Prof. Dr. Silvio O. Rizzoli, Telefon 0551 / 39-33630, srizzol@gwdg.de
Humboldtallee 23, 37073 Göttingen
www.rizzoli-lab.de

CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Wissenschaftliche Koordination, Presse & Öffentlichkeitsarbeit
Dr. Heike Conrad, Telefon 0551 / 39-7065, heike.conrad@med.uni-goettingen.de
Humboldtallee 23, 37073 Göttingen
www.cnmpb.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie