Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in den superkritischen Zustand von Wasser

21.01.2016

Mit Molekulardynamik-Simulationen haben Forscher die Eigenschaften von superkritischem Wasser analysiert. Sie zeigten, welche Struktur das Wasserstoffbrückennetzwerk in unterschiedlichen superkritischen Zuständen annimmt und simulierten die zugehörigen Terahertz-Spektren. Das kann in Zukunft helfen, experimentelle Befunde zu deuten.

Bei rund 375 Grad Celsius und einem 220-fach höheren Druck als Normaldruck erreicht Wasser einen superkritischen Zustand, in dem flüssige und gasförmige Phase nicht mehr klar zu unterscheiden sind – so lautet die traditionelle Lehrbuchmeinung.


Superkritisches Wasser kann unterschiedliche Zustände annehmen, wobei die sogenannte Widom-Linie ein gasähnliches von einem flüssigkeitsähnlichen Regime trennt.

© Christoph Schran

„Erst seit wenigen Jahren wird diskutiert, dass der superkritische Zustand doch eher in ein gas- und ein flüssigkeitsähnliches Regime zu unterteilen sein könnte, getrennt durch die sogenannte Widom-Linie“, erklärt Christoph Schran vom Lehrstuhl für Theoretische Chemie der Ruhr-Universität Bochum, den Prof. Dr. Dominik Marx leitet.

Drei Wasserzustände im Vergleich

Mit Molekulardynamik-Simulationen erforschte das Team um Prof. Marx, wie man die Widom-Linie experimentell mit der Terahertz-Spektroskopie untersuchen könnte. Ihre Ergebnisse beschreiben sie in Kooperation mit der polnischen Gdańsk University of Technology in „Physical Review Letters“. Die Simulationsrechnungen führte das Team unter anderem am Leibniz-Rechenzentrum in München durch.

Die Theoretiker verglichen drei Zustände: den Zustand von flüssigem Wasser bei Raumtemperatur; einen superkritischen Zustand mit hoher Dichte; und einen superkritischen Zustand mit niedriger Dichte. Die Analysen ergaben, dass das Wasserstoffbrückennetzwerk zwischen den Wassermolekülen in diesen drei Zuständen komplett unterschiedlich ausgeprägt ist.

Zustände unterscheiden sich in Größe und Anzahl der Wassercluster

In flüssigem Wasser bei Raumtemperatur sind praktisch alle Wassermoleküle durch Wasserstoffbrücken gebunden. In superkritischem Wasser hingegen bilden sich isolierte Cluster aus Molekülen, die im Inneren des Clusters über Wasserstoffbrücken gebunden sind, aber keine Wasserstoffbrücken zu anderen Clustern aufweisen.

Die Anzahl von Clustern verschiedener Größe unterscheidet sich zwischen den superkritischen Zuständen mit hoher und niedriger Dichte. In superkritischem Wasser mit niedriger Dichte dominierten Eigenschaften der Gas-Phase; in superkritischem Wasser mit hoher Dichte hingegen Eigenschaften der flüssigen Phase.

Die Forscher simulierten die zu den drei Zuständen gehörigen Schwingungsspektren im Terahertz-Bereich, deren Form maßgeblich durch die Struktur des Wasserstoffbrückennetzwerks beeinflusst wird. Was der Form der Spektren auf molekularer Ebene genau zugrunde liegt, ist experimentell nicht direkt zu beobachten. Diese Lücke schließt die Theorie: Die vorliegende Studie klärte die physikalischen Prozesse auf, die die Form der Terahertz-Spektren von gas- und flüssigkeitsähnlichem superkritischen Wasser bedingen.

„Unsere Simulationen offenbaren, dass die Terahertz-Spektroskopie eine ideale Methode sein sollte, um die Eigenschaften der Wasserstoffbrücken im superkritischen Zustand von Wasser zu untersuchen, und zwar auf beiden Seiten der Widom-Linie“, resümiert Schran. „Unsere Ergebnisse werden zudem helfen, gemessene Spektren im Hinblick auf zugrunde liegende molekulare Prozesse zu interpretieren.“

Superkritische Flüssigkeiten als Lösungsmittel für die Industrie

Superkritisches Wasser ist nicht nur für die akademische Grundlagenforschung relevant. Die Industrie nutzt es als umweltfreundliches Lösungsmittel. Kleine Variationen von Druck oder Temperatur nehmen großen Einfluss auf die Eigenschaften. So lässt sich Wasser gezielt auf die erforderlichen Eigenschaften tunen.

Förderung

Die Deutsche Forschungsgemeinschaft förderte die Studie durch das Projekt MA 1547/11 sowie im Rahmen Exzellenzclusters RESOLV (Ruhr Explores Solvation, EXC 1069), der im Jahr 2012 bewilligt wurde. Die Simulationen wurden innerhalb des Bundesprojekts pr86fo am Leibniz-Rechenzentrum in München durchgeführt.

Originalveröffentlichung

M. Śmiechowsk, C. Schran, H. Forbert, D. Marx (2016): Correlated particle motion and THz spectral response of supercritical water, Physical Review Letters, DOI: 10.1103/PhysRevLett.116.027801
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.027801

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie und Biochemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28083, E-Mail: dominik.marx@rub.de

Angeklickt

Lehrstuhl für Theoretische Chemie
http://www.theochem.ruhr-uni-bochum.de/

Exzellenzcluster RESOLV
http://www.ruhr-uni-bochum.de/solvation/

RESOLV-Blog
http://resolv-blog.de/

Leibniz-Rechenzentrum
http://www.lrz.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics