Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in den Sehvorgang

12.09.2014

Mit der Röntgenstrukturanalyse haben Wissenschaftler der Charité – Universitätsmedizin Berlin eine entscheidende Gemeinsamkeit zwischen zwei funktionell und strukturell ganz unterschiedlichen Proteinen des Sehprozesses entdeckt.

Dieser zwischen den Proteinen nahezu homologe Bereich dient als Bindungsstelle für das Sehpigment Rhodopsin und reguliert den Beginn des gesamten Sehvorgangs auf molekularer Ebene. Die Ergebnisse der Studie sind in der aktuellen Ausgabe der Fachzeitschrift Nature Communications* veröffentlicht.

Licht, das ins Auge fällt, löst einen hochkomplexen chemischen Vorgang aus. Am Anfang des Prozesses steht die Wechselwirkung des Lichts mit dem Protein Rhodopsin. Rhodopsin, das sogenannte Sehpurpur, ist in den Zellmembranen der Sehsinneszellen in der Netzhaut des Auges verankert. Es wird von der Energie des einfallenden Lichts angeregt, seine Form zu verändern.

Dadurch kann ein weiteres Protein, ein sogenanntes G-Protein, im Zellinneren an das Rhodopsin andocken. Diese Bindung wiederum löst in der Zelle einen bestimmten Signalweg aus, der in weiteren Verschaltungen ans Gehirn geleitet wird und letztlich zur Bildentstehung führt. Nach kurzer Zeit wird das Rhodopsin wieder abgeschaltet, so dass es für den nächsten Lichtreiz empfänglich ist. Das zum Abschalten notwendige Protein Arrestin dockt ebenfalls an das Rhodopsin und beendet dadurch die Weiterleitung des Signals.

Die Wissenschaftler um Dr. Patrick Scheerer, Leiter der Arbeitsgruppe Proteinstrukturanalyse und Signaltransduktion am Institut für Medizinische Physik und Biophysik der Charité, erstellten mithilfe von Proteinkristallen ein 3D-Bild der Rezeptorstruktur. In einem Proteinkristall sind einzelne Proteine an den Gitterpunkten des Kristallgitters exakt gleich angeordnet und können dann durch Röntgenstrahlung gemessen werden.

Die strukturellen Ergebnisse dieser Arbeit wurden durch verschiedene fluoreszenz- und spektroskopische Methoden in Kooperation mit sechs weiteren Arbeitsgruppen des Instituts überprüft. Diese Methoden ermöglichen es, Konformationsänderungen von Proteinen unter natürlichen Bedingungen zu beobachten und zu messen. „Die Ergebnisse unserer Arbeit zeigen eindeutig, dass sowohl das G-Protein als auch das Arrestin einen sehr ähnlichen strukturellen Teil mit einer nahezu homologen Proteinsequenz besitzen, die den Rezeptor auf ähnliche Weise erkennt und binden kann“, sagt Dr. Michal Szczepek, der Erstautor der Studie.

„Schon in vorangegangenen Studien konnten wir zeigen, wie sich Rhodopsin in den einzelnen Aktivierungsschritten der Sehkaskade verhält. Nun liefern wir einen weiteren Einblick in den Mechanismus der Wechselwirkung zwischen Rezeptor und den interagierenden Proteinen“, sagt Dr. Scheerer. „Da mindestens ein Drittel aller Arzneimittel direkt auf die Gruppe der sogenannten G-protein-gekoppelten Rezeptoren wirkt, zu denen auch das Rhodopsin gehört, ist eine genaue Kenntnis ihrer Struktur, Funktion und Wirkungsweise von besonderer Bedeutung“, fügt er hinzu.

*Szczepek M, Beyrière F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P. Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun. 2014 Sep 10;5:4801. doi: 10.1038/ncomms5801.

Kontakt:
Dr. Patrick Scheerer
Institut für Medizinische Physik und Biophysik
Arbeitsgruppe Proteinstrukturanalyse / Signaltransduktion
Charité – Universitätsmedizin Berlin
t: +49 30 450 524 178
Patrick.Scheerer@charite.de

Weitere Informationen:

http://Institut für Medizinische Physik und Biophysik
http://(http://biophysik.charite.de/institut/)
http://Arbeitsgruppe Proteinstrukturanalyse / Signaltransduktion – AG Scheerer (http://biophysik.charite.de/forschung/struktur_und_funktion_makromolekularer_mas...)

Dr. Julia Biederlack | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics