Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Einblicke in den Regenerationsprozess des Zebrafischgehirns

20.05.2015

Wissenschaftlern am Helmholtz Zentrum München (HMGU) ist es erstmals gelungen, neurale Stammzellen im Gehirn eines Wirbeltiers direkt und in vivo zu beobachten. Der Blick auf die Vorgänge im intakten wie im verletzten Gehirn von Zebrafischen zeigte Erstaunliches: Stammzellen können sich direkt in Neuronen umwandeln. Zudem verstärkt ein veränderter Zellteilungs-Modus nach einer Verletzung den neuronalen Output, wie die Forscher nun im Wissenschaftsmagazin Science veröffentlichten.

Mittels live imaging, der In-vivo-Beobachtung lebender Zellen, wurden einzelne Stammzellen in intakten und verletzten Gehirnen adulter Zebrafische beobachtet. Die Daten zeigen: Neurale Stammzellen liefern nicht über längere Zeit immer wieder neue Nervenzellen, wie vielfach angenommen, sondern nur eine begrenzte Anzahl.


Bild: Neurale Stammzellen (grün markiert) im Telencephalon des adulten Zebrafischs. Quelle: HMGU

Zudem wird der Pool an Stammzellen verbraucht, indem diese sich ohne jede Teilung direkt in Neuronen umwandeln. Dieser Befund widerspricht der bisherigen Ansicht, neurale Stammzellen würden sehr viele neue Neuronen bilden, die dann zu einem späteren Zeitpunkt je nach Bedarf in der jeweils benötigten Funktion in das Nervennetz eingebaut würden.

Im intakten Gehirn teilen sich adulte Stammzellen nur selten – und wenn, dann meist asymmetrisch, d.h. es entstehen eine typische, radial geformte neurale Stammzelle und eine morphologisch davon abweichende neuronale Vorläuferzelle. Nach einer Verletzung wandern solche Vorläufer zum Ort des Geschehens, teilen sich symmetrisch in zwei gleiche Zellen und erhöhen so die Anzahl an Neuronen.

Auch im geschädigten Gehirn, so zeigte das live imaging, teilen sich die Stammzellen vorwiegend asymmetrisch. „Aber bei den wenigen symmetrischen Teilungen entstehen anders als im gesunden Hirn keine Stammzellen, sondern zwei Zellen ohne deren Charakteristika“, schildert Dr. Jovica Ninkovic, Wissenschaftler am Institut für Stammzellenforschung, HMGU.

„Als Grund für diese neue Art der Teilung, bei der Stammzellen verloren gehen, nehmen wir die Verletzung an“, fügt er hinzu, „denn in untersuchten, gesunden Gehirnen trat sie nicht auf“.

Die Studie gibt Einblick in die molekularen Grundlagen des Verhaltens von Stammzellen, die bei der Regeneration eine Rolle spielen.

„Auf dieser Basis sollen nun die molekularen Mechanismen weiter analysiert werden, die das Verhalten nach einer Verletzung verändern“, sagt Prof. Dr. Magdalena Götz, Direktorin des Instituts für Stammzellenforschung, die auch den Lehrstuhl für Physiologische Genomik der Ludwig-Maximilians-Universität München innehat.

Solche Kenntnisse tragen zum Verständnis von Reparaturprozessen neuronaler Schäden bei Säugetieren bei, die ihr ZNS regenerieren können. Und wenn es gelänge, ähnliche Mechanismen auch im verletzten menschlichen Gehirn in Gang zu setzen, könnte das auch diesem bei der Regenerierung helfen.

Weitere Information

Original-Publikation: S. Barbosa et al. (2015). Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain, Science, doi: 10.1126/science.aaa2729

Link zur Fachpublikation: https://www.sciencemag.org/content/348/6236/789.short

Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/artic...

Michael van den Heuvel | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik