Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue DFG-Forschergruppe zur Biogenese von Chloroplasten

16.04.2014

Eine neue, von der Deutschen Forschungsgemeinschaft geförderte Forschergruppe befasst sich mit der Entstehung von Chloroplasten, den Zentren der pflanzlichen Photosynthese. In diesem Verbund kooperiert das Labor für Elektronenmikroskopie der Universität Bayreuth mit vier weiteren Universitäten und dem Max-Planck-Institut für Molekulare Pflanzenphysiologie.

Ohne Chloroplasten gäbe es kein höheres Leben auf der Erde. Chloroplasten sorgen in pflanzlichen Zellen für die Photosynthese. Dabei wird die Energie des Sonnenlichts in chemische Energie umgewandelt. Die chemische Energie setzen die Pflanzen für ihren Stoffwechsel ein, so dass sie neue Biomasse bilden und wachsen können. Die so entstehende Biomasse ist wiederum die Grundlage für die Nahrungsketten, durch die sich Tiere und Menschen ernähren.


Elektronenmikroskopische Aufnahme eines Chloroplasten. Oben: Struktur eines Chloroplasten der Ackerschmalwand (Arabidopsis thaliana). Unten: Detailvergrößerung der Thylakoidstapel (Grana).

Aufnahme: Labor für Elektronenmikroskopie der Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.


PD Dr. Stefan Geimer, Leiter des Labors für Elektronenmikroskopie der Universität Bayreuth.

Foto: Chr. Wißler; zur Veröffentlichung frei.

Chloroplasten sind kleine und nur unter dem Lichtmikroskop sichtbare Organellen in pflanzlichen Zellen. Damit sie aus den Sonnenstrahlen Energie für den Stoffwechsel gewinnen können, muss das Licht zunächst von sogenannten Lichtsammelkomplexen absorbiert werden. Anschließend wird die Energie des absorbierten Lichts in Reaktionszentren weitergeleitet, wo die eigentliche Photosynthese – die Umwandlung in chemische Energie – stattfindet.

Beide Funktionseinheiten, die Lichtsammelkomplexe und die Reaktionszentren, befinden sich in einem besonderen Teil der Chloroplasten, in den Thylakoiden. Es handelt sich hierbei um hochkomplexe Membranen. Diese bilden ein zusammenhängendes Lamellensystem im Inneren eines jeden Chloroplasten. An einigen Stellen sind sie zu geldrollenähnlichen Strukturen übereinandergestapelt, die Grana genannt werden.

Auch wenn die Thylakoide zu den komplexesten Membranen gehören, die bisher bekannt sind, ist ihre Struktur und Funktion bereits relativ gut erforscht. Wie sie entstehen, liegt jedoch weitgehend im Dunkeln. Klar ist nur: Thylakoidmembranen bilden sich dadurch heraus, dass Proteine, Lipide, Pigmente und anorganische Faktoren sich schrittweise zusammenlagern.

Dabei müssen die einzelnen Schritte nicht nur zeitlich, sondern auch räumlich klar getrennt sein. Man nimmt an, dass dieser Vorgang, die Thylakoidbiogenese, an spezialisierten Membranstrukturen beginnt. Dann schreitet er, vergleichbar mit einer Fließbandmontage, bis zur Fertigstellung einer hochgeordneten Membran voran.

Die Prozesse, die an der Entstehung der Thylakoide beteiligt sind, möglichst weitgehend aufzuklären – dies ist das Ziel einer neuen, von der Deutschen Forschungsgemeinschaft (DFG) geförderten Forschergruppe. Sie trägt den Titel: "Biogenesis of thylakoid membranes: Spatiotemporal organization of photosynthetic protein complex assembly". In diesem Verbund, der „FOR 2092“, kooperieren Arbeitsgruppen der Universität Bayreuth, der Humboldt-Universität Berlin, der Ruhr-Universität Bochum, der Technischen Universität Kaiserslautern, der Ludwigs-Maximilians-Universität München und des Max-Planck-Instituts für Molekulare Pflanzenphysiologie in Potsdam-Golm.

Das Bayreuther „Key Lab“ für Elektronenmikroskopie übernimmt in diesem Verbund eine Schlüsselrolle. Denn die Thylakoidstrukturen, die auf ihre Entstehung hin untersucht werden sollen, sind so klein, dass sie – im Unterschied zu den Chloroplasten – unter dem Lichtmikroskop nicht klar erkennbar sind. Dafür bedarf es der weitaus anspruchsvolleren Technik der Elektronenmikroskopie. Der Leiter der Bayreuther Arbeitsgruppe, PD Dr. Stefan Geimer, verfügt über langjährige Erfahrungen in der elektronenmikroskopischen Analyse von Chloroplasten.

Er hat bereits in der Vergangenheit mit einigen Wissenschaftlerinnen und Wissenschaftlern der DFG-Forschergruppe mit großem Erfolg zusammengearbeitet. „Wenn es uns gelingt, die Entstehung von Thylakoidmembranen aufzuklären, wäre das nicht nur ein Fortschritt für die zellbiologische Grundlagenforschung“, erklärt Dr. Geimer. „Die Prozesse des ‚Light harvesting‘, also der pflanzlichen Energiegewinnung aus Sonnenlicht, sind heute vor allem deshalb so spannend, weil man auf der Suche nach neuen und hocheffizienten Techniken für die Gewinnung erneuerbarer Energien ist. Dazu könnte unsere Grundlagenforschung eines Tages einen – wenn auch nur indirekten – Beitrag leisten.“

Die Universität Bayreuth bietet die Infrastruktur für eine Vielzahl elektronenmikroskopischer Verfahren, wie etwa die Präparation von Proben durch chemische Fixierung oder Hochdruckgefrierung. Techniken der Immunogold-Elektronenmikroskopie erlauben eine hochauflösende Lokalisierung von Proteinen, und mithilfe der Elektronentomographie lassen sich dreidimensionale Darstellungen von Thylakoidmembranen erzeugen. Die hohe Forschungskompetenz auf diesen Gebieten und der damit verbundene internationale Ruf waren die Voraussetzung für den Erfolg in der Drittmitteleinwerbung. Die DFG wird das Bayreuther Labor für Elektronenmikroskopie als "Zentralprojekt" für die Forschergruppe in den nächsten drei Jahren mit Personal- und Sachmitteln fördern.

Ansprechpartner:

PD Dr. Stefan Geimer
Elektronenmikroskopie / Zellbiologie
Universität Bayreuth
95440 Bayreuth
Tel. +49 (0)921 / 55-2164
E-Mail: stefan.geimer@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE