Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Details der Genregulation aufgeklärt

16.05.2012
Der Transkriptionsfaktor P-TEFb reguliert RNA-Polymerase nach einem unerwarteten Muster

Wird genetische Information von der Erbsubstanz DNA abgelesen, übersetzt die RNA-Polymerase II sie in RNA-Moleküle. Ein wichtiger Bereich des Polymerase-Moleküls ist die C-terminale Domäne, kurz CTD. Sie übermittelt der Polymerase Informationen darüber, wie der genetische Code abgeschrieben und weiter verarbeitet werden soll. Dazu heftet das Enzym P-TEFb molekulare Botschaften in Form von Phosphatresten an bestimmte Positionen innerhalb der CTD.


Die RNA-Polymerase liest die genetische Information des DNA-Strangs ab und übersetzt sie in Boten-RNA-Moleküle. Phosphat-Anhänge an einzelnen Aminosäure-Gruppen der CTD-Domäne regulieren die Aktivität der Polymerase. © Art For Science


Das Enzym P-TEFb phosphoryliert die Aminosäure Serin an Position 5 und aktiviert so die RNA-Polymerase (oben). Phosphoryliertes Serin an Position 2 blockiert eine Phosphorylierung an Position 5 (mitte). Eine Phosphat-Gruppe an Position 7 verstärkt die Phosphorylierung an Position 5 (unten). © Art For Science

Wissenschaftler am Dortmunder Max-Planck-Institut für molekulare Physiologie haben nun beschrieben, nach welchem Muster P-TEFb dabei vorgeht. Die Ergebnisse sind nicht nur wichtig, um die Genregulation im gesunden Organismus besser zu verstehen, sondern auch medizinisch von Interesse: So spannt etwa HIV das Enzym für seine Zwecke ein, um die Produktion neuer Virusproteine zu beschleunigen.

Mit nur 25000 Genen besitzt der Mensch nicht viel mehr Gene als eine Taufliege – und das, obwohl er deutlich komplexer aufgebaut ist. Information wird aber nicht nur über die Basenabfolge der Erbsubstanz weitergegeben, sondern auch epigenetisch in Form von kleinen Molekülanhängen. So vermitteln etwa „molekulare Haftnotizen“ in Form von Phosphatanhängen der Übersetzungsmaschinerie der Zelle, welche Abschnitte des Erbguts abgelesen werden sollen. Spezielle Enzyme, die solche Markierungen an der richtigen Stelle anbringen, sind deshalb entscheidend dafür, dass die Zelle den genetischen Code korrekt interpretiert.

Matthias Geyer und sein Team am Dortmunder Max-Planck-Institut für molekulare Physiologie haben nun die Arbeitsweise eines solchen Enzyms – des Transkriptionsfaktors P-TEFb – nachverfolgt. P-TEFb bestückt das Ablese-Enzym RNA-Polymerase II mit Phosphat-Botschaften. Diese werden reversibel an die C-terminalen Domäne (CTD) geheftet und sind wichtig dafür, dass eine Abschrift der Basensequenz erstellt werden kann. Die Forscher haben gezeigt, nach welchem Schema P-TEFb die Phosphat-Reste anbringt und wie bereits bestehende Markierungen die Aktivität des Enzyms beeinflussen.

„Wie wir herausgefunden haben, kann P-TEFb bestimmte Phosphorylierungsmuster so, wie sie in der Literatur beschrieben sind, gar nicht erzeugen“, erklärt Matthias Geyer. Der Grund dafür ist, dass sich manche Markierungen scheinbar gegenseitig beeinflussen: Ist eine bestimmte Stelle schon markiert, muss eine andere freibleiben – ähnlich wie bei einem Online-Fragebogen, bei dem man jeweils nur ein Kästchen anklicken kann. Damit haben die Forscher gängiges Lehrbuchwissen widerlegt: „Bisher hat man angenommen, dass P-TEFb innerhalb einer Wiederholungseinheit von sieben Aminosäuren die Serine an den Positionen zwei und fünf phosphorylieren kann“, sagt der Wissenschaftler. „Tatsächlich kann das Enzym Position zwei aber gar nicht phosphorylieren und Position fünf auch nur dann, wenn Position zwei noch keinen Phosphatrest trägt. Eine Kombination von Phosphatresten an den Positionen zwei und fünf kann P-TEFb also auf keinen Fall erzeugen.“ Eine weitere Überraschung für die Forscher war, dass das Enzym seine Aktivität um das Vierfache steigert, wenn das Serin an Position sieben bereits vorphosphoryliert ist. Warum das so ist, wissen die Forscher bisher noch nicht.

Die CTD ist ein evolutionär alter Teil der RNA-Polymerase II. Beim Menschen besteht dieser Bereich aus 52 hintereinandergeschalteten Wiederholungen eines Motivs aus sieben Aminosäuren. Die meisten dieser Aminosäuren können mit Phosphat-Anhängen versehen werden, was vielfältige Möglichkeiten ergibt, Informationen zu verschlüsseln und weiterzugeben. Die Forscher gehen davon aus, dass auf diese Weise sogar Botschaften zwischen dem Ablese-Enzym und den Histonen ausgetauscht werden − jenen Verpackungs-Proteinen, die als Spulen dienen, um die fadenförmige Erbsubstanz aufzuwickeln und im Zellkern zu verstauen. Die Histone tragen ebenfalls kleine chemische Anhängsel, so dass Wissenschaftler von einem eigenen „Histon-Code“ sprechen. Während des Ablesevorgangs liegen die Histone eng benachbart zur CTD, was den Informationsfluss erleichtert.

Die molekularen Botschaften, die P-TEFb innerhalb der C-terminalen Domäne anbringt, sind nicht nur für die Genregulation im gesunden Organismus wichtig, sondern spielen auch bei verschiedenen Krankheiten eine wichtige Rolle. Dazu gehören bestimmte Krebsarten, Erkrankungen des Herzmuskels sowie HIV: So spannen HI-Viren das Enzym für ihre Zwecke ein, um das Ablesen des genetischen Codes zu beschleunigen und die Zelle dazu zu bringen, möglichst schnell mit der Produktion von Virus-Proteinen zu beginnen. Um den Krankheitsmechanismen auf die Spur zu kommen, wollen Forscher die Funktionsweise des Enzyms daher möglichst genau verstehen.

Die Studie der Dortmunder Wissenschaftler ist die bisher detaillierteste zur Funktionsweise von P-TEFb. Die genaue Analyse der Phosphatmuster gelang den Forschern mithilfe genetisch veränderter RNA-Polymerase II-Moleküle, die sie mit definierten Mengen des Enzyms versetzt haben. Daraufhin konnten sie exakt bestimmen, welche Positionen innerhalb der CTD mit Phosphat-Markierungen bestückt wurden und wie hoch die Aktivität des Enzyms war.

Ansprechpartner

PD Dr. Matthias Geyer
Telefon: +49 231 133-2366
Fax: +49 231 133-2399
Email: matthias.geyer@­mpi-dortmund.mpg.de

Originalveröffentlichung
Nadine Czudnochowski, Christian A. Bösken, Matthias Geyer
Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition

Nature Communications, 15. Mai 2012, DOI: 10.1038/ncomms1846

Dr. Matthias Geyer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5794770/Details_Genregulation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie