Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Datenbank hilft bei Entdeckung eines neuen Risikogens für Parkinson

20.03.2012
Forscher des Max-Planck-Instituts für molekulare Genetik entwickeln online-Datenbank für genetische Daten bei der Parkinson-Krankheit

Wie viele andere Krankheiten des Erwachsenenalters wird das Parkinson-Syndrom durch ein Zusammenspiel von Umwelteinflüssen und genetischen Risikofaktoren verursacht. Der eindeutige Nachweis genetischer Risikofaktoren ist allerdings schwierig, wie hunderte von publizierten Studien mit häufig widersprüchlichen Ergebnissen zeigen.

Um die Interpretation der großen, beständig wachsenden Datenmenge zum Thema Parkinson zu erleichtern, haben jetzt Wissenschaftler des Berliner Max-Planck-Instituts für molekulare Genetik in Zusammenarbeit mit 44 Kollaborationspartnern aus der ganzen Welt ein umfassendes, frei zugängliches Daten-Kompendium für die Parkinson-Krankheit erstellt.

Durch die Zusammenführung aller verfügbaren Daten gelang es den Forschern gleichzeitig, ein neues Risikogen zu identifizieren, das bisher noch nicht mit der Parkinson-Krankheit in Verbindung gebracht worden war.

Studien zur Erforschung des Risikoprofils komplexer genetischer Erkrankungen führen oft zu widersprüchlichen Ergebnissen. So kann eine Forschergruppe überzeugende Daten präsentieren, dass sich bei Vorliegen einer bestimmten Sequenzvariante im Genom das Risiko einer Erkrankung erhöht. Untersuchungen in unabhängigen Stichproben finden aber für genau diese Risikoeffekte dann häufig keine Hinweise. Dies trifft auch auf die Parkinson-Krankheit zu. Um aussagekräftige Ergebnisse zu erhalten, müssen Wissenschaftler daher auf so genannte Meta-Analysen zurückgreifen. Dies sind statistische Verfahren, die die Ergebnisse mehrerer Studien quantitativ zusammenführen. "Wenn man es mit Millionen genetischer Varianten in fast 1000 wissenschaftlichen Publikationen zu tun hat, kann das schnell zur Sisyphus-Arbeit werden", sagt Christina M. Lill, Erstautorin der Studie.

"Dieses Projekt wäre nicht möglich gewesen ohne die Unterstützung vieler Forschungsgruppen aus dem Parkinson-Bereich, die ihre Daten für PDGene zur Verfügung gestellt haben", so Lars Bertram, Projektleiter in der Abteilung "Analyse des Vertebratengenoms", unter dessen Leitung die Studie erstellt wurde und der mit seinem Team bereits ähnliche Datenbanken für die Alzheimer-Krankheit und Schizophrenie verwirklicht hat. "Neben der Bestätigung von etwa einem Dutzend genetischer Risikogene haben wir auch eine viel größere Anzahl von Genen ausgeschlossen, die in der Vergangenheit als Parkinson-Risikogene diskutiert worden sind."

Die Zusammenführung aller existierenden Daten zu den betreffenden Genen zeigte deutlich, dass für diese kein Risikoeffekt für die Parkinson-Erkrankung nachgewiesen werden kann. Derartige "negative" Daten sind wichtig, damit zukünftige Untersuchungen in dem Gebiet nicht auf falschen Hypothesen aufbauen. "Durch einen glücklichen Zufall haben wir bei unseren Analysen aber auch ein neues Risikogen entdeckt, das bislang noch nicht mit Parkinson in Verbindung gebracht worden ist", erklärt Bertram. Dieses neu identifizierte Gen, ITGA8 ("alpha-8 integrin"), kodiert für ein im Gehirn vorkommendes Eiweiß. Bisherige Studien haben gezeigt, dass es dort Wechselwirkungen zwischen Zellen beeinflusst und das Auswachsen von Nervenzellfortsätzen reguliert, die für den Tastsinn und die Bewegung notwendig sind. Weitere Studien sind notwendig, um die potenziellen molekularen und biochemischen Mechanismen der Verbindung von ITGA8 mit Parkinson zu klären.

Der vom Max-Planck-Team verwendete Meta-Analyse-Ansatz wurde ursprünglich für die Analyse von Ergebnissen klinischer Studien entwickelt, beispielsweise von pharmakologischen Studien. Ähnlich wie genetische Studien zeigen auch diese häufig widersprüchliche Ergebnisse. Für die Meta-Analysen der PDGene-Studie mussten alle relevanten Daten zuerst identifiziert, geprüft und dann mit bereits existierenden Daten abgeglichen werden. "Neben der Bedeutung für die Parkinson-Forschung kann unser Ansatz auch als hilfreiches Beispiel für andere Erkrankungen dienen", sagt Bertram. Seine Gruppe arbeitet nun an Datenbanken für andere neurogenetische Krankheiten wie die amyotrophe Lateralsklerose, frontotemporale Demenz und Multiple Sklerose.

Ansprechpartner

Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik, Berlin
Telefon: +49 30 8413-1716
Fax: +49 30 8413-1671
E-Mail: patricia.marquardt@molgen.mpg.de
Originalpublikation
Lill CM , Roehr JT , McQueen MB , Kavvoura FK , Bagade S, et al. (2012)
Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database.

PLoS Genet 8(3): e1002548. doi:10.1371/journal.pgen.1002548

Dr. Patricia Marquardt | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5332418/risikogen_parkinson_datenbank

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie