Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue chemische Bindungen in Hochdruck-Bor-Kristallen entdeckt

10.06.2011
Die Welt der chemischen Bindungen ist noch immer für Überraschungen gut. In Bor- Kristallen, die im Hochdruck-Laboratorium des Bayerischen Geoinstituts (BGI) hergestellt wurden, hat ein Forschungsteam der Universität Bayreuth chemische Bindungen entdeckt, die in Bor-haltigen Materialien bisher unbekannt waren.

Über diese Erkenntnisse, die aus einer Zusammenarbeit mit der European Synchrotron Radiation Facility in Grenoble und der schwedischen Universität Linköping hervorgegangen sind, berichten die Bayreuther Wissenschaftler in den „Physical Review Letters“. Unter extremen Drücken synthetisierte Bor-Kristalle besitzen als Halbleitermaterialien hochinteressante Eigenschaften.


Das Gradientenbild der Elektronendichte zeigt einen Ausschnitt aus einem Bor-Kristall, das unter hohem Druck synthetisiert wurde. Die Zentren B1, B4 und B5 markieren die Positionen von Bor-Atomen. Die blauen Punkte zwischen B1 und B4 stehen für ein-Elektron-zwei-Zentren-Bindungen. Die drei blauen Punkte, welche B4-B4-B5 verbinden, stehen zusammen mit dem grünen Punkt in der Mitte von B4-B4-B5 für eine zwei-Elektronen-drei-Zentren-Bindung.

Hochdruck-Synthese von Einkristallen für die Bor-Forschung

Bor ist ein chemisches Element, das hinsichtlich seiner Strukturen weniger gut erforscht ist als andere chemische Elemente. Insbesondere die chemischen Bindungen, die zwischen Bor-Atomen bestehen, sind längst nicht vollständig aufgeklärt. Denn moderne Untersuchungsverfahren mit Synchrotron-Röntgenstrahlung, die grundsätzlich über die Lage der Elektronen und über die Art der chemischen Bindungen in einem Material Aufschluss geben können, ließen sich lange Zeit auf das leichte Element Bor (B) nicht anwenden.

Um diese Verfahren für die Untersuchung von Bor einsetzen zu können, benötigt die Forschung möglichst hochwertige Einkristalle. Einkristalle eines Materials sind dadurch charakterisiert, dass sich die Atome in eine einheitliche Gitterstruktur einfügen. Sie gelten in der Forschung als qualitativ hochwertig, wenn keine oder allenfalls geringfügige Abweichungen von der Gitterstruktur vorkommen. Hochwertige Einkristalle, die sich aus Bor-Atomen zusammensetzen, entstehen aber nur unter technisch äußerst anspruchsvollen Bedingungen und waren deshalb für die Forschung lange Zeit nicht verfügbar. Und so blieben die chemischen Bindungen in Bor-haltigen Materialien weitgehend unzugänglich.

Erst vor zwei Jahren hat ein Forschungsteam der Universität Bayreuth unter der Leitung von Prof. Dr. Leonid Dubrovinsky ein zuverlässiges Verfahren entwickeln können, das es ermöglicht, Bor-Kristalle unter hohen Drücken zu synthetisieren. Für diese aufwändigen Arbeiten bildeten die europaweit einzigartigen Technologien der Hochdruck- und Hochtemperaturforschung im Bayerischen Geoinstitut, einem Forschungszentrum der Universität Bayreuth, eine leistungsstarke Infrastruktur. Mit dem neuen Verfahren ist es gelungen, qualitativ hochwertige Einkristalle zu züchten. Darin sind Ikosaeder, die jeweils aus 12 Bor-Atomen bestehen, in einer durchweg einheitlichen und stabilen Gitterstruktur angeordnet.

Diese Einkristalle wurden mit Synchrotronstrahlung analysiert, d.h. mit einer intensiven Röntgenstrahlung, die im Teilchenbeschleuniger zu Forschungszwecken gezielt erzeugt wird. Die Arbeiten standen unter der Leitung von Prof. Dr. Sander van Smaalen, der an der Universität Bayreuth den Lehrstuhl für Kristallographie innehat, und Prof. Dr. Natalia Dubrovinskaia, die vor kurzem in Bayreuth eine Heisenberg-Professur für Materialphysik und Technologie bei extremen Bedingungen übernommen hat. Das Bayreuther Team arbeitete eng mit der European Synchrotron Radiation Facility in Grenoble (ESRF) zusammen, einer der größten Synchrotronstrahlenquellen in Europa. Die hier durch Röntgenbeugung gewonnenen Daten wurden mit speziellen Rechenprogrammen in sog. Gradientenbilder übersetzt. Gradientenbilder geben Auskunft über die Lage und die unterschiedliche Elektronendichte der in einem Material. Sie ermöglichen zuverlässige Rückschlüsse auf die Position und die Stabilität von chemischen Bindungen, die zwischen den Atomen bestehen.

Auswertung von Gradientenbildern

Gemeinsam mit einer Arbeitsgruppe für Theoretische Physik an der Universität Linköping haben die Bayreuther Hochdruckforscher die Gradientenbilder ausgewertet, die bei der Analyse der Hochdruck-Bor-Kristalle entstanden waren. Dabei entdeckten sie zwei Arten von chemischen Bindungen, von denen man bisher nicht wusste, dass sie innerhalb eines Bor-Kristalls existieren können. Physikalisch gesprochen, handelt es sich einerseits um ein-Elektron-zwei-Zentren-Bindungen, die benachbarte ikosaedrische Bor-Cluster verbinden; andererseits um polar-kovalente zwei-Elektronen-drei-Zentren-Bindungen. Letzere werden gebildet zwischen einem Paar von Atomen aus einem ikosaedrischen Bor-Cluster und einem Atom der interstitiellen B2-Gruppe.

„Diese für uns überraschenden Erkenntnisse sind zunächst einmal für die Grundlagenforschung interessant“, erklärt Prof. Dr. Sander van Smalen. „Wir müssen aber mit der Möglichkeit rechnen, dass die unter extremen Drücken gebildeten Bor-Kristalle an Bedeutung für die Industrie gewinnen. Denn wenn sie für elektronische Geräte und Schaltungen als Halbleiter eingesetzt werden, besitzen sie einzigartige optische Eigenschaften und zeichnen sich durch eine überdurchschnittliche Härte aus. Für derartige industrielle Anwendungen können unsere Grundlagenforschungen in einer Weise relevant werden, die sich heute noch nicht absehen lässt.“

Die Bayreuther Forschungsarbeiten an Hochdruck-Bor-Kristallen und an Bor-verwandten Materialien werden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen ihrer Schwerpunktprogramme 1236 („Strukturen und Eigenschaften von Kristallen bei extrem hohen Drücken und Temperaturen) und 1178 („Experimentelle Elektronendichte als Schlüssel zum Verständnis chemischer Wechselwirkungen“) gefördert.

Veröffentlichung:

S. Mondal, S. van Smaalen, A. Schönleber, Y. Filinchuk, D. Chernyshov, S. I. Simak,
A. S. Mikhaylushkin, I. A. Abrikosov, E. Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia,
Electron deficient and polycenter bonds in the high-pressure γ-B28 phase of boron
in: Physical Review Letters, 106, 215502 (2011).
DOI-Bookmark (Link): 10.1103/PhysRevLett.106.215502
Ansprechpartner für weitere Informationen:
Prof. Dr. Sander van Smalen
Lehrstuhl für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3886
E-Mail: smash@uni-bayreuth.de
Prof. Dr. Natalia Dubrovinskaia
Materialphysik und Technologie bei extremen Bedingungen
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3880
E-Mail: natalia.dubrovinskaia@uni-bayreuth.de
Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3736
E-Mail: leonid.dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise