Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue chemische Bindungen in Hochdruck-Bor-Kristallen entdeckt

10.06.2011
Die Welt der chemischen Bindungen ist noch immer für Überraschungen gut. In Bor- Kristallen, die im Hochdruck-Laboratorium des Bayerischen Geoinstituts (BGI) hergestellt wurden, hat ein Forschungsteam der Universität Bayreuth chemische Bindungen entdeckt, die in Bor-haltigen Materialien bisher unbekannt waren.

Über diese Erkenntnisse, die aus einer Zusammenarbeit mit der European Synchrotron Radiation Facility in Grenoble und der schwedischen Universität Linköping hervorgegangen sind, berichten die Bayreuther Wissenschaftler in den „Physical Review Letters“. Unter extremen Drücken synthetisierte Bor-Kristalle besitzen als Halbleitermaterialien hochinteressante Eigenschaften.


Das Gradientenbild der Elektronendichte zeigt einen Ausschnitt aus einem Bor-Kristall, das unter hohem Druck synthetisiert wurde. Die Zentren B1, B4 und B5 markieren die Positionen von Bor-Atomen. Die blauen Punkte zwischen B1 und B4 stehen für ein-Elektron-zwei-Zentren-Bindungen. Die drei blauen Punkte, welche B4-B4-B5 verbinden, stehen zusammen mit dem grünen Punkt in der Mitte von B4-B4-B5 für eine zwei-Elektronen-drei-Zentren-Bindung.

Hochdruck-Synthese von Einkristallen für die Bor-Forschung

Bor ist ein chemisches Element, das hinsichtlich seiner Strukturen weniger gut erforscht ist als andere chemische Elemente. Insbesondere die chemischen Bindungen, die zwischen Bor-Atomen bestehen, sind längst nicht vollständig aufgeklärt. Denn moderne Untersuchungsverfahren mit Synchrotron-Röntgenstrahlung, die grundsätzlich über die Lage der Elektronen und über die Art der chemischen Bindungen in einem Material Aufschluss geben können, ließen sich lange Zeit auf das leichte Element Bor (B) nicht anwenden.

Um diese Verfahren für die Untersuchung von Bor einsetzen zu können, benötigt die Forschung möglichst hochwertige Einkristalle. Einkristalle eines Materials sind dadurch charakterisiert, dass sich die Atome in eine einheitliche Gitterstruktur einfügen. Sie gelten in der Forschung als qualitativ hochwertig, wenn keine oder allenfalls geringfügige Abweichungen von der Gitterstruktur vorkommen. Hochwertige Einkristalle, die sich aus Bor-Atomen zusammensetzen, entstehen aber nur unter technisch äußerst anspruchsvollen Bedingungen und waren deshalb für die Forschung lange Zeit nicht verfügbar. Und so blieben die chemischen Bindungen in Bor-haltigen Materialien weitgehend unzugänglich.

Erst vor zwei Jahren hat ein Forschungsteam der Universität Bayreuth unter der Leitung von Prof. Dr. Leonid Dubrovinsky ein zuverlässiges Verfahren entwickeln können, das es ermöglicht, Bor-Kristalle unter hohen Drücken zu synthetisieren. Für diese aufwändigen Arbeiten bildeten die europaweit einzigartigen Technologien der Hochdruck- und Hochtemperaturforschung im Bayerischen Geoinstitut, einem Forschungszentrum der Universität Bayreuth, eine leistungsstarke Infrastruktur. Mit dem neuen Verfahren ist es gelungen, qualitativ hochwertige Einkristalle zu züchten. Darin sind Ikosaeder, die jeweils aus 12 Bor-Atomen bestehen, in einer durchweg einheitlichen und stabilen Gitterstruktur angeordnet.

Diese Einkristalle wurden mit Synchrotronstrahlung analysiert, d.h. mit einer intensiven Röntgenstrahlung, die im Teilchenbeschleuniger zu Forschungszwecken gezielt erzeugt wird. Die Arbeiten standen unter der Leitung von Prof. Dr. Sander van Smaalen, der an der Universität Bayreuth den Lehrstuhl für Kristallographie innehat, und Prof. Dr. Natalia Dubrovinskaia, die vor kurzem in Bayreuth eine Heisenberg-Professur für Materialphysik und Technologie bei extremen Bedingungen übernommen hat. Das Bayreuther Team arbeitete eng mit der European Synchrotron Radiation Facility in Grenoble (ESRF) zusammen, einer der größten Synchrotronstrahlenquellen in Europa. Die hier durch Röntgenbeugung gewonnenen Daten wurden mit speziellen Rechenprogrammen in sog. Gradientenbilder übersetzt. Gradientenbilder geben Auskunft über die Lage und die unterschiedliche Elektronendichte der in einem Material. Sie ermöglichen zuverlässige Rückschlüsse auf die Position und die Stabilität von chemischen Bindungen, die zwischen den Atomen bestehen.

Auswertung von Gradientenbildern

Gemeinsam mit einer Arbeitsgruppe für Theoretische Physik an der Universität Linköping haben die Bayreuther Hochdruckforscher die Gradientenbilder ausgewertet, die bei der Analyse der Hochdruck-Bor-Kristalle entstanden waren. Dabei entdeckten sie zwei Arten von chemischen Bindungen, von denen man bisher nicht wusste, dass sie innerhalb eines Bor-Kristalls existieren können. Physikalisch gesprochen, handelt es sich einerseits um ein-Elektron-zwei-Zentren-Bindungen, die benachbarte ikosaedrische Bor-Cluster verbinden; andererseits um polar-kovalente zwei-Elektronen-drei-Zentren-Bindungen. Letzere werden gebildet zwischen einem Paar von Atomen aus einem ikosaedrischen Bor-Cluster und einem Atom der interstitiellen B2-Gruppe.

„Diese für uns überraschenden Erkenntnisse sind zunächst einmal für die Grundlagenforschung interessant“, erklärt Prof. Dr. Sander van Smalen. „Wir müssen aber mit der Möglichkeit rechnen, dass die unter extremen Drücken gebildeten Bor-Kristalle an Bedeutung für die Industrie gewinnen. Denn wenn sie für elektronische Geräte und Schaltungen als Halbleiter eingesetzt werden, besitzen sie einzigartige optische Eigenschaften und zeichnen sich durch eine überdurchschnittliche Härte aus. Für derartige industrielle Anwendungen können unsere Grundlagenforschungen in einer Weise relevant werden, die sich heute noch nicht absehen lässt.“

Die Bayreuther Forschungsarbeiten an Hochdruck-Bor-Kristallen und an Bor-verwandten Materialien werden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen ihrer Schwerpunktprogramme 1236 („Strukturen und Eigenschaften von Kristallen bei extrem hohen Drücken und Temperaturen) und 1178 („Experimentelle Elektronendichte als Schlüssel zum Verständnis chemischer Wechselwirkungen“) gefördert.

Veröffentlichung:

S. Mondal, S. van Smaalen, A. Schönleber, Y. Filinchuk, D. Chernyshov, S. I. Simak,
A. S. Mikhaylushkin, I. A. Abrikosov, E. Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia,
Electron deficient and polycenter bonds in the high-pressure γ-B28 phase of boron
in: Physical Review Letters, 106, 215502 (2011).
DOI-Bookmark (Link): 10.1103/PhysRevLett.106.215502
Ansprechpartner für weitere Informationen:
Prof. Dr. Sander van Smalen
Lehrstuhl für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3886
E-Mail: smash@uni-bayreuth.de
Prof. Dr. Natalia Dubrovinskaia
Materialphysik und Technologie bei extremen Bedingungen
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3880
E-Mail: natalia.dubrovinskaia@uni-bayreuth.de
Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3736
E-Mail: leonid.dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten