Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Biomaterialien für Knochen- und Knorpelersatz

27.10.2011
Für Knochendefekte und Knorpelverschleiß gibt es jetzt Aussicht auf besonders verträgliche Implantate einer neuen Generation.

Forscher der Max-Planck- und Fraunhofer-Gesellschaft sowie der Universität Stuttgart entwickeln für Knochen- und Knorpelersatz biomimetische Gerüststrukturen, die die natürliche Umgebung des Körpers nachahmen. Auf diesen Matrices differenzieren Stammzellen zu Knochen- und Knorpelzellen. Mit einem Implantat, das derart von körpereigenen Zellen überzogen ist, ließe sich in Zukunft schadhaftes Gewebe ersetzen – ohne Nebenwirkungen.

Für Arthrose, bei der Defekte an Knorpel und Knochen der Gelenke auftreten, gibt es bislang noch immer keine optimale Behandlung. Das könnte sich in Zukunft ändern. Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB (Stuttgart), der Max-Planck-Institute für Intelligente Systeme (Stuttgart) und Polymerforschung (Mainz) sowie der Universität Stuttgart untersuchen, wie Materialien für eine neue Generation von Implantaten beschaffen sein müssen, damit Zellen auf ihnen zu neuem funktionierenden Knochen- oder Knorpelgewebe zusammenwachsen. Diese Zusammenarbeit ist eines von 19 Kooperationsprojekten, die von Max-Plank- und Fraunhofer-Gesellschaft initiiert wurden, um Erkenntnisse der Grundlagenforschung in die Anwendung zu bringen.

»Wir wollen eine Gerüststruktur entwickeln, die adulten Stammzellen – das sind noch nicht spezialisierte Vorläuferzellen – die optimale Umgebung bietet, um sich anzusiedeln, zu wachsen und zu knochen- und knorpelbildenden Zellen zu reifen«, erläutert Prof. Dr. Thomas Hirth, Leiter des Fraunhofer IGB. Im Gewebe befinden sich Zellen in einem dreidimensionalen Gefüge, der extrazellulären Matrix, mit der sie über feine Kontakte kommunizieren und aus der sie unterschiedliche Reize empfangen. »Mit unseren synthetischen, biomimetischen Matrices ahmen wir diese Gegebenheiten nach«, so Hirth.

Die Wissenschaftler machen sich dabei zunutze, dass Zellen im Körper sehr empfindlich auf mechanische Kräfte aus ihrer unmittelbaren Umgebung ansprechen. »Wir haben zunächst systematisch analysiert, mit welchen biochemischen Signalen Zellen auf mechanische Reize verschiedener Oberflächenstrukturen reagieren«, sagt Prof. Dr. Joachim Spatz, Direktor am Max-Planck-Institut für Intelligente Systeme und Projektleiter auf Max-Planck-Seite. Die Forscher haben einen Zellbiochip entwickelt, der in zahlreiche Areale mit jeweils unterschiedlichen Matrices und verschiedenen Nanostrukturen unterteilt ist. Die Nanostrukturen, etwa Nanoinseln aus Gold, werden nach einem jeweils definierten Muster aufgetragen.

»Von der Umgebung hängt auch ab, zu welchen Zellen Stammzellen differenzieren«, erklärt Spatz. Eine Rolle spielen dabei die Elastizität und die chemische Zusammensetzung der Matrix, aber auch die Dichte der metallischen Nanoinseln auf ihrer Oberfläche. Nur wenn den Stammzellen das künstlich geschaffene Milieu passt, verhalten sie sich darauf wie in ihrer natürlichen Umwelt und entwickeln sich in die gewünschte Richtung. »Aufgrund der vielen verschiedenen Strukturen auf einem sehr kleinen Areal erlaubt uns der Biochip, die Reaktion der Stammzellen auf unterschiedliche Oberflächenstrukturen mit hohem Durchsatz zu testen«, erklärt Spatz.

Um eine dreidimensionale Matrix für das Grundgerüst eines Implantats herzustellen, haben die Kollegen am Fraunhofer IGB die Erkenntnisse der Max-Planck-Forscher aufgegriffen und zwei ganz unterschiedliche Werkstoffe zu einem Kompositmaterial vereint: Polymilchsäure, ein bioabbaubares und körperverträgliches Polymer, und Hydroxylapatit, ein Mineral, aus dem die Knochensubstanz besteht. Aus dem Kompositmaterial haben die Fraunhofer-Forscher die Strukturen geschaffen, auf denen sich die Stammzellen in den Untersuchungen ihrer Max-Planck-Kollegen zu Knochen- und Knorpelzellen entwickelten. »Stammzellen heften sich tatsächlich auf dieser Matrix an«, sagt Hirth. »Es ist uns gelungen, sowohl die Zusammensetzung der Matrix als auch deren Porosität so einzustellen, dass wir das Zellwachstum beeinflussen.«

Doch es geht noch einen Schritt weiter, schließlich sollen sich die Stammzellen auch zu den gewünschten Knochen- oder Knorpelzellen ausbilden. Hierzu benötigen sie auch Wachstumsfaktoren und Hormone. Im Körper wird die Zelldifferenzierung präzise gesteuert, indem Signalproteine nach Art einer Kaskade die Ausprägung gewebetypischer Funktionen in Gang setzen. »Damit dieser komplexe Vorgang auch außerhalb des Körpers funktioniert, integrieren wir die Signalproteine in die Matrix. Dann kann sie auch tatsächlich mit den Stammzellen kommunizieren«, erklärt Hirth. Zu diesem Zweck verpacken sie die Signalproteine in NANOCYTES® – kleinen Nanokügelchen mit einem festen Kern und einer flexiblen Schale, die in die Oberfläche der Matrices integriert werden.

Das Signalprotein TWEAK, das Forscher der Universität Stuttgart untersuchen, haben die Fraunhofer-Forscher bereits in solchen Kügelchen auf den biomimetischen Matrices untergebracht. Die Universität Stuttgart ist mit immunologischen und systembiologischen Arbeiten an dem Forschungsvorhaben beteiligt und wird dabei durch das Landesministerium Baden-Württemberg für Wissenschaft und Kunst finanziert. Damit die Signalmoleküle zum richtigen Zeitpunkt aus den Nanopartikeln freigesetzt werden, haben Forscher des Max-Planck-Instituts für Polymerforschung Schutzgruppen entwickelt, die sich durch Licht zum gewünschten Zeitpunkt aktivieren lassen.

»Die Kooperation läuft noch bis 2012 und wird sicherlich danach weitergeführt«, sagt Joachim Spatz. Für diese Zeit haben die Wissenschaftler sich einiges vorgenommen: »Mit den biomimetischen Matrices haben wir die Basis für körpereigene Implantate geschaffen«, sagt Thomas Hirth. »Nun möchten wir den Differenzierungsprozess außerhalb des Körpers standardisieren und evaluieren.« Wenn dies gelingt, könnten selbstheilende Implantate für Knochen und Knorpel bald in die medizinische Praxis gelangen.

NANOCYTES® ist eine Wortmarke der Fraunhofer-Gesellschaft.

Birgit Niesing | fra
Weitere Informationen:
http://www.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit