Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Biomaterialien für Knochen- und Knorpelersatz

27.10.2011
Für Knochendefekte und Knorpelverschleiß gibt es jetzt Aussicht auf besonders verträgliche Implantate einer neuen Generation.

Forscher der Max-Planck- und Fraunhofer-Gesellschaft sowie der Universität Stuttgart entwickeln für Knochen- und Knorpelersatz biomimetische Gerüststrukturen, die die natürliche Umgebung des Körpers nachahmen. Auf diesen Matrices differenzieren Stammzellen zu Knochen- und Knorpelzellen. Mit einem Implantat, das derart von körpereigenen Zellen überzogen ist, ließe sich in Zukunft schadhaftes Gewebe ersetzen – ohne Nebenwirkungen.

Für Arthrose, bei der Defekte an Knorpel und Knochen der Gelenke auftreten, gibt es bislang noch immer keine optimale Behandlung. Das könnte sich in Zukunft ändern. Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB (Stuttgart), der Max-Planck-Institute für Intelligente Systeme (Stuttgart) und Polymerforschung (Mainz) sowie der Universität Stuttgart untersuchen, wie Materialien für eine neue Generation von Implantaten beschaffen sein müssen, damit Zellen auf ihnen zu neuem funktionierenden Knochen- oder Knorpelgewebe zusammenwachsen. Diese Zusammenarbeit ist eines von 19 Kooperationsprojekten, die von Max-Plank- und Fraunhofer-Gesellschaft initiiert wurden, um Erkenntnisse der Grundlagenforschung in die Anwendung zu bringen.

»Wir wollen eine Gerüststruktur entwickeln, die adulten Stammzellen – das sind noch nicht spezialisierte Vorläuferzellen – die optimale Umgebung bietet, um sich anzusiedeln, zu wachsen und zu knochen- und knorpelbildenden Zellen zu reifen«, erläutert Prof. Dr. Thomas Hirth, Leiter des Fraunhofer IGB. Im Gewebe befinden sich Zellen in einem dreidimensionalen Gefüge, der extrazellulären Matrix, mit der sie über feine Kontakte kommunizieren und aus der sie unterschiedliche Reize empfangen. »Mit unseren synthetischen, biomimetischen Matrices ahmen wir diese Gegebenheiten nach«, so Hirth.

Die Wissenschaftler machen sich dabei zunutze, dass Zellen im Körper sehr empfindlich auf mechanische Kräfte aus ihrer unmittelbaren Umgebung ansprechen. »Wir haben zunächst systematisch analysiert, mit welchen biochemischen Signalen Zellen auf mechanische Reize verschiedener Oberflächenstrukturen reagieren«, sagt Prof. Dr. Joachim Spatz, Direktor am Max-Planck-Institut für Intelligente Systeme und Projektleiter auf Max-Planck-Seite. Die Forscher haben einen Zellbiochip entwickelt, der in zahlreiche Areale mit jeweils unterschiedlichen Matrices und verschiedenen Nanostrukturen unterteilt ist. Die Nanostrukturen, etwa Nanoinseln aus Gold, werden nach einem jeweils definierten Muster aufgetragen.

»Von der Umgebung hängt auch ab, zu welchen Zellen Stammzellen differenzieren«, erklärt Spatz. Eine Rolle spielen dabei die Elastizität und die chemische Zusammensetzung der Matrix, aber auch die Dichte der metallischen Nanoinseln auf ihrer Oberfläche. Nur wenn den Stammzellen das künstlich geschaffene Milieu passt, verhalten sie sich darauf wie in ihrer natürlichen Umwelt und entwickeln sich in die gewünschte Richtung. »Aufgrund der vielen verschiedenen Strukturen auf einem sehr kleinen Areal erlaubt uns der Biochip, die Reaktion der Stammzellen auf unterschiedliche Oberflächenstrukturen mit hohem Durchsatz zu testen«, erklärt Spatz.

Um eine dreidimensionale Matrix für das Grundgerüst eines Implantats herzustellen, haben die Kollegen am Fraunhofer IGB die Erkenntnisse der Max-Planck-Forscher aufgegriffen und zwei ganz unterschiedliche Werkstoffe zu einem Kompositmaterial vereint: Polymilchsäure, ein bioabbaubares und körperverträgliches Polymer, und Hydroxylapatit, ein Mineral, aus dem die Knochensubstanz besteht. Aus dem Kompositmaterial haben die Fraunhofer-Forscher die Strukturen geschaffen, auf denen sich die Stammzellen in den Untersuchungen ihrer Max-Planck-Kollegen zu Knochen- und Knorpelzellen entwickelten. »Stammzellen heften sich tatsächlich auf dieser Matrix an«, sagt Hirth. »Es ist uns gelungen, sowohl die Zusammensetzung der Matrix als auch deren Porosität so einzustellen, dass wir das Zellwachstum beeinflussen.«

Doch es geht noch einen Schritt weiter, schließlich sollen sich die Stammzellen auch zu den gewünschten Knochen- oder Knorpelzellen ausbilden. Hierzu benötigen sie auch Wachstumsfaktoren und Hormone. Im Körper wird die Zelldifferenzierung präzise gesteuert, indem Signalproteine nach Art einer Kaskade die Ausprägung gewebetypischer Funktionen in Gang setzen. »Damit dieser komplexe Vorgang auch außerhalb des Körpers funktioniert, integrieren wir die Signalproteine in die Matrix. Dann kann sie auch tatsächlich mit den Stammzellen kommunizieren«, erklärt Hirth. Zu diesem Zweck verpacken sie die Signalproteine in NANOCYTES® – kleinen Nanokügelchen mit einem festen Kern und einer flexiblen Schale, die in die Oberfläche der Matrices integriert werden.

Das Signalprotein TWEAK, das Forscher der Universität Stuttgart untersuchen, haben die Fraunhofer-Forscher bereits in solchen Kügelchen auf den biomimetischen Matrices untergebracht. Die Universität Stuttgart ist mit immunologischen und systembiologischen Arbeiten an dem Forschungsvorhaben beteiligt und wird dabei durch das Landesministerium Baden-Württemberg für Wissenschaft und Kunst finanziert. Damit die Signalmoleküle zum richtigen Zeitpunkt aus den Nanopartikeln freigesetzt werden, haben Forscher des Max-Planck-Instituts für Polymerforschung Schutzgruppen entwickelt, die sich durch Licht zum gewünschten Zeitpunkt aktivieren lassen.

»Die Kooperation läuft noch bis 2012 und wird sicherlich danach weitergeführt«, sagt Joachim Spatz. Für diese Zeit haben die Wissenschaftler sich einiges vorgenommen: »Mit den biomimetischen Matrices haben wir die Basis für körpereigene Implantate geschaffen«, sagt Thomas Hirth. »Nun möchten wir den Differenzierungsprozess außerhalb des Körpers standardisieren und evaluieren.« Wenn dies gelingt, könnten selbstheilende Implantate für Knochen und Knorpel bald in die medizinische Praxis gelangen.

NANOCYTES® ist eine Wortmarke der Fraunhofer-Gesellschaft.

Birgit Niesing | fra
Weitere Informationen:
http://www.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungsnachrichten

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungsnachrichten

Polarstern ab heute unterwegs nach Spitzbergen, um Rolle der Wolken bei Erwärmung der Arktis zu untersuchen

24.05.2017 | Geowissenschaften