Neue Anwendungen in lebenden Zellen: Nanobodies verändern die Form und Funktion von Proteinen

GFP wird mit anderen Proteinen fusioniert, um diese in lebenden Zellen verfolgen zu können. Die Einsatzmöglichkeiten des Moleküls erweitern sich nun mit Hilfe der Nanobodies beträchtlich. Ganz neuartige experimentelle Ansätze sind zudem denkbar, weil die Studie auch zeigen konnte, wie die Nanobodies im strukturellen Detail auf die Proteine wirken.(Nature Structural and Molecular Biology online, 13. Dezember 2009)

Antikörper sind spezialisierte Moleküle, die Fremdkörper im Organismus als Ziele für eine Immunattacke markieren. Weil sie hochspezifisch an fast jede chemische Struktur binden können, werden sie auch in der Forschung und in der Therapie genutzt. Konventionelle Antikörper aber sind zu groß, um in lebenden Zellen zum Einsatz zu kommen. Eine Alternative bieten Kamele und ihre südamerikanischen Verwandten, die Alpakas Guanakos, Lamas und Vicunjas: Diese Tiere produzieren auch sehr viel kleinere Antikörper, aus deren Erkennungsdomäne sogenannte Nanobodies gebildet werden, die auch in Zellen funktionieren.

Das LMU-Team arbeitete mit Kollegen der TU Darmstadt, der Freien Universität in Brüssel und des LMU-Spinoffs ChromoTek zusammen, um Nanobodies zu erzeugen, die spezifisch auf GFP reagieren: Zunächst wurden Alpakas mit GFP immunisiert. Dann wurde die genetische Information für Antikörper – auch jener, die GFP erkennen – in Bakterien übertragen. „Diese Antikörperfragmente wurden dann von den Bakterien synthetisiert und konnten getestet werden, ob sie an GFP binden“, erklärt Rothbauer. „Insgesamt konnten wir sieben passende Nanobodies auf diesem Weg identifizieren.“

GFP ist geformt wie eine Tonne, die an beiden Enden offen ist. In ihrem Inneren bildet sich spontan das sogenannte Chromophor. Diese lichtabsorbierende Struktur ist für die Erzeugung der Fluoreszenz nötig. Die Absorption von Licht lässt grüne Fluoreszenz entstehen, wobei die Antwort von der genauen Konformation des Proteins abhängt. Zwei Nanobodies hatten einen deutlichen Einfluss auf diesen Zusammenhang. „Ein Nanobody verstärkte durch seine Bindung die Fluoreszenz um das Fünffache“, berichtet Rothbauer. „Der andere hat sie dagegen um den Faktor vier reduziert, so dass wir das Signal ein- und ausschalten konnten.“ Wie dies gelingt, zeigten Strukturanalysen am Genzentrum der LMU. „Unsere Untersuchungen haben ergeben, dass ein Nanobody eine bestimmte Region des Proteins näher an das Chromophor drückt, während der andere es eher wegschiebt“, sagt Erstautor Axel Kirchhofer.

In einem weiteren Experiment prüften die Forscher, ob der verstärkende Nanobody auch als Sensor für GFP-fusionierte Proteine in der Zelle dienen könnte. Dazu nutzten sie Zellen, die einen GFP-gebundenen Hormonrezeptor im Zellinneren produzieren. Der Nanobody wurde dagegen an der Innenseite der Membran des Zellkerns synthetisiert. Die Zugabe des passenden Hormons ließ dann den Rezeptor in den Zellkern wandern. „Wir konnten diesen Prozess durch eine Messung der Fluoreszenz verfolgen, die durch die Bindung des Nanobody an das GFP induziert wurde“, so Rothbauer. „Diese erfolgreiche Kooperation zwischen Zell- und Strukturbiologen hat den Nachweis geliefert, dass Nanobodies verschiedene Proteinkonformationen erkennen, induzieren und stabilisieren, was sie für den Einsatz in lebenden Zellen prädestiniert.“ (PH/suwe)

Publikation:
„Modulation of protein properties in living cells using nanobodies“
Axel Kirchhofer, Jonas Helma, Katrin Schmidthals, Carina Frauer, Sheng Cui, Annette Karcher, Mireille Pellis, Serge Muyldermans, Corella Casas Delucchi, M. Cristina Cardoso, Heinrich Leonhardt, Karl-Peter Hopfner and Ulrich Rothbauer

Nature Structural and Molecular Biology online, 13. Dezember 2009

Ansprechpartner:
Dr. Ulrich Rothbauer,
Biozentrum der LMU und ChromoTek GmbH
Tel.: +49 (0) 89 / 2180-74287
E-Mail: u.rothbauer@lmu.de
Prof. Dr. Karl-Peter Hopfner
Genzentrum der LMU
Tel.: +49 (0) 89 / 2180-76953
E-Mail: hopfner@lmb.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer