Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Anwendung für die Nahfeldmikroskopie

02.08.2013
Wissenschaftler der Universität Tübingen setzen Goldspitze als „optische Antenne“ ein, um Nanostrukturen zu untersuchen

Wissenschaftler der Universität Tübingen haben eine neue Anwendung für die Nahfeldmikroskopie entwickelt. Die Forschungsgruppe von Professor Alfred Meixner aus dem Institut für Physikalische und Theoretische Chemie hat die Fluoreszenz einer scharfen Goldspitze eingesetzt, um die Nahfelder von Nanostrukturen zu untersuchen.


Schematische Zeichnung der neuen Messmethode: (a) Die scharfe Goldspitze rastert über die Struktur, die von einem Laserstrahl angeregt wird. In Bereichen hoher Nahfeldintensität strahlt die Goldspitze rotverschobenes Licht aus, das nach einem Filter detektiert wird. Die resultierenden Bilder sind in b) und c) zu sehen.
Abbildung: Sebastian Jäger/Universität Tübingen

Die Ergebnisse wurden in Zusammenarbeit mit einer Forschergruppe der Universität Stuttgart (Professor Harald Giessen) erreicht und werden in der August-Ausgabe des wissenschaftlichen Journals „Nano Letters“ veröffentlicht. (DOI: 10.1021/nl401173g)

Optische Nahfelder sind oberflächennahe Felder um Objekte im Nanobereich. Sie konnten bisher nur schwer vermessen werden, da sie nur eine geringe Abstrahlung aufweisen: Ihre elektromagnetische Feldstärke fällt innerhalb weniger Nanometer ab und reicht nur in einen Bereich, der kleiner ist als 600 Nanometer ‒ ein Nanometer entspricht einem Millionstel Millimeter.

In solchen Nahfeldern können sowohl Kopplungen als auch Energieübertragungen zwischen Nanoobjekten stattfinden. Kennt man die Form und Größe dieser Nahfelder, können solche Prozesse, also die Wechselwirkung zwischen Strukturen, besser verstanden werden.

Die Visualisierung der optischen Nahfelder von Nanoobjekten ist in den letzten Jahren in den Fokus der Forschung gerückt. Es wurden anspruchsvolle Methoden entwickelt, um die Form und Lokalisierung der Nahfelder nachzuweisen, wie beispielsweise die „nahfeldinduzierte Polymerisation“ oder Techniken, die scharfe Spitzen als Sonden einsetzen, um die Auflösung zu verbessern.

Einige dieser spitzenbasierten Methoden verwenden punktförmige Objekte, die Strahlung abgeben, wie einzelne Moleküle, während andere die Streuung einzelner Goldnanokugeln als Nahfeldsonde verwenden. Zwar ist die Streuung einer einzelnen Goldkugel sehr stabil, aber dafür beeinflusst diese stark das untersuchte Nahfeld.

Die Tübinger Wissenschaftler haben nun einen neuen Ansatz für die Untersuchung von Nahfeldern plasmonischer Nanoobjekte entwickelt, beispielsweise in Metallen wie Aluminium. Dabei setzen sie die sehr stabile Fluoreszenz einer scharfen Goldspitze mit einem Spitzenradius unter zehn Nanometern ein.

Diese wirkt wie eine optische „Breitbandantenne“: Das Nahfeld wird in einer sechseckigen Aluminium-Nanostruktur mit Laserlicht passender Symmetrie angeregt, das entweder azimutal (ringförmig) und radial (von der Mitte ausgehend) polarisiert ist. Dies führt zu einer Energieübertragung von der Struktur zur Spitze, die dadurch zur Fluoreszenz angeregt wird. Dieses „Signal“ ist direkt von der Stärke des Nahfelds abhängig, die Wissenschaftler können so mit einer neuen und vereinfachten Technik Nahfelder von Nanostrukturen vermessen und abbilden.

Kontakt:
Sebastian Jäger
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Physikalische und Theoretische Chemie,
Telefon +49 7071 29-76174
sebastian.jaeger(at)uni-tuebingen.de
Prof. Dr. Alfred Meixner
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Physikalische und Theoretische Chemie Telefon
Telefon +49 7071 29- 76903
alfred.meixner(at)uni-tuebingen.de

Myriam Hönig | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
21.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics