Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Adern brauchen Druck

01.03.2016

Der Blutdruck ist treibende Kraft bei der Angiogenese: Mit zeitlich hochaufgelösten Bildern hat ein Team um Prof. Holger Gerhardt am MDC erstmals gezeigt, wie sich Kapillaren bilden. Der Blutdruck presst die Zellmembran von Gefäßzellen nach innen, daraus wächst ein Gefäßschlauch heran. Die Zelle dirigiert den Prozess mithilfe der Fasern ihres Zellskeletts. Die Ergebnisse der Arbeit in Nature Cell Biology könnten helfen, die Angiogenese während der Embryonalentwicklung und bei Krebs zu verstehen (Mitteilung des Berliner Instituts für Gesundheitsforschung (BIH), des Deutschen Zentrums für Herz-Kreislaufforschung (DZHK), der Charité und des Max-Delbrück-Centrums für Molekulare Medizin (MDC)).

Mit zeitlich hochaufgelösten Bildern hat die Arbeitsgruppe um Prof. Holger Gerhardt am MDC erstmals im Detail gezeigt, wie sich Blutkapillaren neu bilden: der Blutdruck presst die Zellmembran von Gefäßzellen nach innen, daraus wächst ein zusammenhängender Gefäßschlauch heran.


Im Randbereich der Netzhaut einer Maus bilden sich neue Kapillarschleifen. Bild: Véronique Gebala.

Die Zelle dirigiert den Prozess mit Hilfe der Fasern ihres Zellskeletts. Die Ergebnisse der Arbeit in Nature Cell Biology könnten helfen, die Angiogenese während der Embryonalentwicklung und bei Erkrankungen wie Krebs zu verstehen. Auch für die Störung der Gefäßbildung bei Diabetes könnte der Prozess eine Rolle spielen.

Die Forscherteams um Prof. Holger Gerhardt am Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berliner Institut für Gesundheitsforschung (BIH), Deutschen Zentrum für Herz-Kreislaufforschung (DZHK) und am Flämischen Institut für Biotechnologie (VIB) in Belgien haben ein völlig neues Konzept der Neubildung von feinsten Kapillaren entdeckt.

Bekannt war, dass zunächst neue Zellen aus der Wand eines vorhandenen Blutgefäßes in die Umgebung sprießen. Wie genau sich anschließend der innere Hohlraum bildet, durch den später das Blut fließt, war bislang allerdings unklar.

Gerhardts Team nutzt modernste Konfokalmikroskopie und lebende Zebrafischembryonen, deren Gefäßzellen genetisch mit fluoreszierenden Proteinen markiert werden. Die Forscher beobachteten unter dem Mikroskop, wie der Blutdruck eine Einstülpung in die Gefäßsprosse presst und sie weiter vorantreibt. Die Zelle dirigiert den Prozess mit Proteinfasern aus Actin und Myosin. So wächst der Hohlraum der neuen Kapillare immer nur an der Spitze weiter.

Kapillaren werden gebildet, wenn neue Gewebeabschnitte mit Sauerstoff und Nahrung versorgt werden sollen: bei der Embryonalentwicklung oder der Wundheilung. Auch schnell wachsende Krebsgeschwüre lassen Gefäße sprießen, aber: „Die Gefäße in Tumoren sind nicht normal. Sie sind undicht und können den Gefäßdurchmesser häufig nicht kontrollieren“, sagt die Doktorandin und Erstautorin Véronique Gebala. Nicht nur für das Verständnis von Krebs sind die neuen Ergebnisse bedeutend.

„Wenn die Gefäßbildung wirklich so stark von der Hydrodynamik des Blutes abhängt, was bedeutet das für physiologische Blutdrucksituationen?“ fragt Gruppenleiter Gerhardt. Bei Diabetikern werden zum Beispiel die Gefäße der Netzhaut im Auge abgebaut, die natürlicherweise von starken Blutdruckschwankungen betroffen sind.

Inwieweit der neu entdeckte Mechanismus der Gefäßbildung für diese Krankheitsbilder mitverantwortlich ist, gilt es nun herauszufinden, sagt Gebala: „Der nächste logische Schritt ist die Untersuchung pathologischer Situationen.“

Holger Gerhardt ist Forschungsgruppenleiter am MDC und hat eine BIH-Professur für Experimentelle Herz-Kreislaufforschung an der Charité - Universitätsmedizin Berlin, sowie eine DZHK-Professur.

Véronique Gebala1,3, Russell Collins1,3, Ilse Geudens2, Li-Kun Phng2,4, Holger Gerhardt1,2,3,5,6 (2016): „Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo.“ Nature Cell Biology. doi:10.1038/ncb3320
1 Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, Vereinigtes Königreich; 2 Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, Katholische Universität Leuven, Belgien; 3 Derzeitige Adresse: Integrative Vaskuläre Biologie, Max-Delbrück Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin; 4 Derzeitige Adresse: Abteilung für Zellbiologie, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; 5 Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Standort Berlin; 6 Berliner Institut für Gesundheitsforschung (BIH), Berlin

Li-Kun Phng und Holger Gerhardt haben gleichermaßen zur Arbeit beigetragen.

Weitere Informationen:

https://insights.mdc-berlin.de/de/2016/02/neue-adern-spriessen-unter-druck/ -- Ausführlicher Artikel zum Thema

Josef Zens | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Treibjagd in der Petrischale
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen
24.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie