Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Adern brauchen Druck

01.03.2016

Der Blutdruck ist treibende Kraft bei der Angiogenese: Mit zeitlich hochaufgelösten Bildern hat ein Team um Prof. Holger Gerhardt am MDC erstmals gezeigt, wie sich Kapillaren bilden. Der Blutdruck presst die Zellmembran von Gefäßzellen nach innen, daraus wächst ein Gefäßschlauch heran. Die Zelle dirigiert den Prozess mithilfe der Fasern ihres Zellskeletts. Die Ergebnisse der Arbeit in Nature Cell Biology könnten helfen, die Angiogenese während der Embryonalentwicklung und bei Krebs zu verstehen (Mitteilung des Berliner Instituts für Gesundheitsforschung (BIH), des Deutschen Zentrums für Herz-Kreislaufforschung (DZHK), der Charité und des Max-Delbrück-Centrums für Molekulare Medizin (MDC)).

Mit zeitlich hochaufgelösten Bildern hat die Arbeitsgruppe um Prof. Holger Gerhardt am MDC erstmals im Detail gezeigt, wie sich Blutkapillaren neu bilden: der Blutdruck presst die Zellmembran von Gefäßzellen nach innen, daraus wächst ein zusammenhängender Gefäßschlauch heran.


Im Randbereich der Netzhaut einer Maus bilden sich neue Kapillarschleifen. Bild: Véronique Gebala.

Die Zelle dirigiert den Prozess mit Hilfe der Fasern ihres Zellskeletts. Die Ergebnisse der Arbeit in Nature Cell Biology könnten helfen, die Angiogenese während der Embryonalentwicklung und bei Erkrankungen wie Krebs zu verstehen. Auch für die Störung der Gefäßbildung bei Diabetes könnte der Prozess eine Rolle spielen.

Die Forscherteams um Prof. Holger Gerhardt am Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berliner Institut für Gesundheitsforschung (BIH), Deutschen Zentrum für Herz-Kreislaufforschung (DZHK) und am Flämischen Institut für Biotechnologie (VIB) in Belgien haben ein völlig neues Konzept der Neubildung von feinsten Kapillaren entdeckt.

Bekannt war, dass zunächst neue Zellen aus der Wand eines vorhandenen Blutgefäßes in die Umgebung sprießen. Wie genau sich anschließend der innere Hohlraum bildet, durch den später das Blut fließt, war bislang allerdings unklar.

Gerhardts Team nutzt modernste Konfokalmikroskopie und lebende Zebrafischembryonen, deren Gefäßzellen genetisch mit fluoreszierenden Proteinen markiert werden. Die Forscher beobachteten unter dem Mikroskop, wie der Blutdruck eine Einstülpung in die Gefäßsprosse presst und sie weiter vorantreibt. Die Zelle dirigiert den Prozess mit Proteinfasern aus Actin und Myosin. So wächst der Hohlraum der neuen Kapillare immer nur an der Spitze weiter.

Kapillaren werden gebildet, wenn neue Gewebeabschnitte mit Sauerstoff und Nahrung versorgt werden sollen: bei der Embryonalentwicklung oder der Wundheilung. Auch schnell wachsende Krebsgeschwüre lassen Gefäße sprießen, aber: „Die Gefäße in Tumoren sind nicht normal. Sie sind undicht und können den Gefäßdurchmesser häufig nicht kontrollieren“, sagt die Doktorandin und Erstautorin Véronique Gebala. Nicht nur für das Verständnis von Krebs sind die neuen Ergebnisse bedeutend.

„Wenn die Gefäßbildung wirklich so stark von der Hydrodynamik des Blutes abhängt, was bedeutet das für physiologische Blutdrucksituationen?“ fragt Gruppenleiter Gerhardt. Bei Diabetikern werden zum Beispiel die Gefäße der Netzhaut im Auge abgebaut, die natürlicherweise von starken Blutdruckschwankungen betroffen sind.

Inwieweit der neu entdeckte Mechanismus der Gefäßbildung für diese Krankheitsbilder mitverantwortlich ist, gilt es nun herauszufinden, sagt Gebala: „Der nächste logische Schritt ist die Untersuchung pathologischer Situationen.“

Holger Gerhardt ist Forschungsgruppenleiter am MDC und hat eine BIH-Professur für Experimentelle Herz-Kreislaufforschung an der Charité - Universitätsmedizin Berlin, sowie eine DZHK-Professur.

Véronique Gebala1,3, Russell Collins1,3, Ilse Geudens2, Li-Kun Phng2,4, Holger Gerhardt1,2,3,5,6 (2016): „Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo.“ Nature Cell Biology. doi:10.1038/ncb3320
1 Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, Vereinigtes Königreich; 2 Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, Katholische Universität Leuven, Belgien; 3 Derzeitige Adresse: Integrative Vaskuläre Biologie, Max-Delbrück Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin; 4 Derzeitige Adresse: Abteilung für Zellbiologie, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; 5 Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Standort Berlin; 6 Berliner Institut für Gesundheitsforschung (BIH), Berlin

Li-Kun Phng und Holger Gerhardt haben gleichermaßen zur Arbeit beigetragen.

Weitere Informationen:

https://insights.mdc-berlin.de/de/2016/02/neue-adern-spriessen-unter-druck/ -- Ausführlicher Artikel zum Thema

Josef Zens | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie