Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Adern brauchen Druck

01.03.2016

Der Blutdruck ist treibende Kraft bei der Angiogenese: Mit zeitlich hochaufgelösten Bildern hat ein Team um Prof. Holger Gerhardt am MDC erstmals gezeigt, wie sich Kapillaren bilden. Der Blutdruck presst die Zellmembran von Gefäßzellen nach innen, daraus wächst ein Gefäßschlauch heran. Die Zelle dirigiert den Prozess mithilfe der Fasern ihres Zellskeletts. Die Ergebnisse der Arbeit in Nature Cell Biology könnten helfen, die Angiogenese während der Embryonalentwicklung und bei Krebs zu verstehen (Mitteilung des Berliner Instituts für Gesundheitsforschung (BIH), des Deutschen Zentrums für Herz-Kreislaufforschung (DZHK), der Charité und des Max-Delbrück-Centrums für Molekulare Medizin (MDC)).

Mit zeitlich hochaufgelösten Bildern hat die Arbeitsgruppe um Prof. Holger Gerhardt am MDC erstmals im Detail gezeigt, wie sich Blutkapillaren neu bilden: der Blutdruck presst die Zellmembran von Gefäßzellen nach innen, daraus wächst ein zusammenhängender Gefäßschlauch heran.


Im Randbereich der Netzhaut einer Maus bilden sich neue Kapillarschleifen. Bild: Véronique Gebala.

Die Zelle dirigiert den Prozess mit Hilfe der Fasern ihres Zellskeletts. Die Ergebnisse der Arbeit in Nature Cell Biology könnten helfen, die Angiogenese während der Embryonalentwicklung und bei Erkrankungen wie Krebs zu verstehen. Auch für die Störung der Gefäßbildung bei Diabetes könnte der Prozess eine Rolle spielen.

Die Forscherteams um Prof. Holger Gerhardt am Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berliner Institut für Gesundheitsforschung (BIH), Deutschen Zentrum für Herz-Kreislaufforschung (DZHK) und am Flämischen Institut für Biotechnologie (VIB) in Belgien haben ein völlig neues Konzept der Neubildung von feinsten Kapillaren entdeckt.

Bekannt war, dass zunächst neue Zellen aus der Wand eines vorhandenen Blutgefäßes in die Umgebung sprießen. Wie genau sich anschließend der innere Hohlraum bildet, durch den später das Blut fließt, war bislang allerdings unklar.

Gerhardts Team nutzt modernste Konfokalmikroskopie und lebende Zebrafischembryonen, deren Gefäßzellen genetisch mit fluoreszierenden Proteinen markiert werden. Die Forscher beobachteten unter dem Mikroskop, wie der Blutdruck eine Einstülpung in die Gefäßsprosse presst und sie weiter vorantreibt. Die Zelle dirigiert den Prozess mit Proteinfasern aus Actin und Myosin. So wächst der Hohlraum der neuen Kapillare immer nur an der Spitze weiter.

Kapillaren werden gebildet, wenn neue Gewebeabschnitte mit Sauerstoff und Nahrung versorgt werden sollen: bei der Embryonalentwicklung oder der Wundheilung. Auch schnell wachsende Krebsgeschwüre lassen Gefäße sprießen, aber: „Die Gefäße in Tumoren sind nicht normal. Sie sind undicht und können den Gefäßdurchmesser häufig nicht kontrollieren“, sagt die Doktorandin und Erstautorin Véronique Gebala. Nicht nur für das Verständnis von Krebs sind die neuen Ergebnisse bedeutend.

„Wenn die Gefäßbildung wirklich so stark von der Hydrodynamik des Blutes abhängt, was bedeutet das für physiologische Blutdrucksituationen?“ fragt Gruppenleiter Gerhardt. Bei Diabetikern werden zum Beispiel die Gefäße der Netzhaut im Auge abgebaut, die natürlicherweise von starken Blutdruckschwankungen betroffen sind.

Inwieweit der neu entdeckte Mechanismus der Gefäßbildung für diese Krankheitsbilder mitverantwortlich ist, gilt es nun herauszufinden, sagt Gebala: „Der nächste logische Schritt ist die Untersuchung pathologischer Situationen.“

Holger Gerhardt ist Forschungsgruppenleiter am MDC und hat eine BIH-Professur für Experimentelle Herz-Kreislaufforschung an der Charité - Universitätsmedizin Berlin, sowie eine DZHK-Professur.

Véronique Gebala1,3, Russell Collins1,3, Ilse Geudens2, Li-Kun Phng2,4, Holger Gerhardt1,2,3,5,6 (2016): „Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo.“ Nature Cell Biology. doi:10.1038/ncb3320
1 Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, Vereinigtes Königreich; 2 Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, Katholische Universität Leuven, Belgien; 3 Derzeitige Adresse: Integrative Vaskuläre Biologie, Max-Delbrück Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin; 4 Derzeitige Adresse: Abteilung für Zellbiologie, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; 5 Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Standort Berlin; 6 Berliner Institut für Gesundheitsforschung (BIH), Berlin

Li-Kun Phng und Holger Gerhardt haben gleichermaßen zur Arbeit beigetragen.

Weitere Informationen:

https://insights.mdc-berlin.de/de/2016/02/neue-adern-spriessen-unter-druck/ -- Ausführlicher Artikel zum Thema

Josef Zens | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie