Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Adern brauchen Druck

01.03.2016

Der Blutdruck ist treibende Kraft bei der Angiogenese: Mit zeitlich hochaufgelösten Bildern hat ein Team um Prof. Holger Gerhardt am MDC erstmals gezeigt, wie sich Kapillaren bilden. Der Blutdruck presst die Zellmembran von Gefäßzellen nach innen, daraus wächst ein Gefäßschlauch heran. Die Zelle dirigiert den Prozess mithilfe der Fasern ihres Zellskeletts. Die Ergebnisse der Arbeit in Nature Cell Biology könnten helfen, die Angiogenese während der Embryonalentwicklung und bei Krebs zu verstehen (Mitteilung des Berliner Instituts für Gesundheitsforschung (BIH), des Deutschen Zentrums für Herz-Kreislaufforschung (DZHK), der Charité und des Max-Delbrück-Centrums für Molekulare Medizin (MDC)).

Mit zeitlich hochaufgelösten Bildern hat die Arbeitsgruppe um Prof. Holger Gerhardt am MDC erstmals im Detail gezeigt, wie sich Blutkapillaren neu bilden: der Blutdruck presst die Zellmembran von Gefäßzellen nach innen, daraus wächst ein zusammenhängender Gefäßschlauch heran.


Im Randbereich der Netzhaut einer Maus bilden sich neue Kapillarschleifen. Bild: Véronique Gebala.

Die Zelle dirigiert den Prozess mit Hilfe der Fasern ihres Zellskeletts. Die Ergebnisse der Arbeit in Nature Cell Biology könnten helfen, die Angiogenese während der Embryonalentwicklung und bei Erkrankungen wie Krebs zu verstehen. Auch für die Störung der Gefäßbildung bei Diabetes könnte der Prozess eine Rolle spielen.

Die Forscherteams um Prof. Holger Gerhardt am Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berliner Institut für Gesundheitsforschung (BIH), Deutschen Zentrum für Herz-Kreislaufforschung (DZHK) und am Flämischen Institut für Biotechnologie (VIB) in Belgien haben ein völlig neues Konzept der Neubildung von feinsten Kapillaren entdeckt.

Bekannt war, dass zunächst neue Zellen aus der Wand eines vorhandenen Blutgefäßes in die Umgebung sprießen. Wie genau sich anschließend der innere Hohlraum bildet, durch den später das Blut fließt, war bislang allerdings unklar.

Gerhardts Team nutzt modernste Konfokalmikroskopie und lebende Zebrafischembryonen, deren Gefäßzellen genetisch mit fluoreszierenden Proteinen markiert werden. Die Forscher beobachteten unter dem Mikroskop, wie der Blutdruck eine Einstülpung in die Gefäßsprosse presst und sie weiter vorantreibt. Die Zelle dirigiert den Prozess mit Proteinfasern aus Actin und Myosin. So wächst der Hohlraum der neuen Kapillare immer nur an der Spitze weiter.

Kapillaren werden gebildet, wenn neue Gewebeabschnitte mit Sauerstoff und Nahrung versorgt werden sollen: bei der Embryonalentwicklung oder der Wundheilung. Auch schnell wachsende Krebsgeschwüre lassen Gefäße sprießen, aber: „Die Gefäße in Tumoren sind nicht normal. Sie sind undicht und können den Gefäßdurchmesser häufig nicht kontrollieren“, sagt die Doktorandin und Erstautorin Véronique Gebala. Nicht nur für das Verständnis von Krebs sind die neuen Ergebnisse bedeutend.

„Wenn die Gefäßbildung wirklich so stark von der Hydrodynamik des Blutes abhängt, was bedeutet das für physiologische Blutdrucksituationen?“ fragt Gruppenleiter Gerhardt. Bei Diabetikern werden zum Beispiel die Gefäße der Netzhaut im Auge abgebaut, die natürlicherweise von starken Blutdruckschwankungen betroffen sind.

Inwieweit der neu entdeckte Mechanismus der Gefäßbildung für diese Krankheitsbilder mitverantwortlich ist, gilt es nun herauszufinden, sagt Gebala: „Der nächste logische Schritt ist die Untersuchung pathologischer Situationen.“

Holger Gerhardt ist Forschungsgruppenleiter am MDC und hat eine BIH-Professur für Experimentelle Herz-Kreislaufforschung an der Charité - Universitätsmedizin Berlin, sowie eine DZHK-Professur.

Véronique Gebala1,3, Russell Collins1,3, Ilse Geudens2, Li-Kun Phng2,4, Holger Gerhardt1,2,3,5,6 (2016): „Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo.“ Nature Cell Biology. doi:10.1038/ncb3320
1 Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, Vereinigtes Königreich; 2 Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, Katholische Universität Leuven, Belgien; 3 Derzeitige Adresse: Integrative Vaskuläre Biologie, Max-Delbrück Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin; 4 Derzeitige Adresse: Abteilung für Zellbiologie, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; 5 Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Standort Berlin; 6 Berliner Institut für Gesundheitsforschung (BIH), Berlin

Li-Kun Phng und Holger Gerhardt haben gleichermaßen zur Arbeit beigetragen.

Weitere Informationen:

https://insights.mdc-berlin.de/de/2016/02/neue-adern-spriessen-unter-druck/ -- Ausführlicher Artikel zum Thema

Josef Zens | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise