Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Technik ermöglicht Massenfabrikation von Nanoteilchen

18.03.2016

Maßgeschneiderte Kolloide für zahlreiche wissenschaftliche und technische Anwendungen lassen sich schnell und kostengünstig produzieren.

Gemeinsam mit Experimentatoren von der Princeton University (USA) haben Mainzer Physiker um Dr. Arash Nikoubashman eine neuartige Technik zur Massenfabrikation von Nanoteilchen entwickelt und theoretisch analysiert.


Schematische Darstellung der Fabrikationstechnik mit experimenteller Aufnahme eines Janus Nanoteilchens bestehend aus Polystyren und Polyisopren (Durchmesser etwa 300nm)

Abb./Copyright: Arash Nikoubashman

Damit wird es möglich, schnell und kostengünstig polymerbasierte Kolloide – Nanoteilchen in einer Lösung – herzustellen. Solche maßgeschneiderten Kolloide werden für zahlreiche wissenschaftliche und technische Anwendungen benötigt.

Bisher war es jedoch nur mit großem Aufwand, hohen Kosten und in kleiner Zahl möglich, die für moderne Anwendungen sehr gefragten Nanoteilchen zu produzieren.

Experimente in Princeton zeigten, dass beim schnellen Mischen einer Polymerlösung mit Wasser weiche Nanopartikel entstehen, die ohne das Hinzufügen zusätzlicher Stoffe stabil bleiben – eine verblüffend einfache Lösung für das Problem, Nanoteilchen zu erzeugen. Als Polymerlösung wurde zunächst in Tetrahydrofuran (THF) gelöstes Polystyrol (Styropor) sowie Polyisopren (Naturkautschuk) verwendet.

Um die zugrunde liegende Physik zu verstehen und systematisch zu erforschen, wie sich diese Aggregation über verschiedene Parameter beeinflussen lässt, haben Physiker um Dr. Arash Nikoubashman in Mainz zahlreiche Simulationen durchgeführt. Das Wasser lässt die Polymerketten kollabieren und zu Nanopartikeln aggregieren.

Die Tatsache, dass sich die Teilchen spontan selbst anordnen, macht es möglich zu beeinflussen, wie sich die einzelnen Partikel zu komplexeren Strukturen zusammenfügen. Über die Geschwindigkeit des Mischens und die Konzentration der Polymerlösung lässt sich gut steuern, wie groß die entstehenden Partikel werden.

Nanoteilchen stecken etwa in Katalysatoren, Kosmetik, wasserabweisenden Strukturen und optoelektronischen Elementen, zudem spielen sie in der medizinischen Forschung eine große Rolle. Die Eigenschaften dieser Teilchen sind abhängig vom Material, aus denen sie gemacht sind, aber auch ganz entscheidend von ihrer Größe und Oberflächenbeschaffenheit.

Bei der bisherigen Produktion von Nanoteilchen mussten oft zusätzliche Stabilisatoren eingebracht werden, damit die entstandenen Nanoteilchen nicht direkt wieder zerfallen oder verklumpen (aggregieren). Solche Stabilisatoren lagern sich um das Nanoteilchen herum an und beeinflussen damit die Oberflächenbeschaffenheit des Teilchens, die wiederum manchmal genau von entscheidender Bedeutung für die jeweilige Anwendung ist.

Dies ist zum Beispiel der Fall bei so genannten Janus-Teilchen, die aus zwei Hälften mit gegensätzlichen Eigenschaften bestehen. Jetzt ist es den Wissenschaftlern aus Mainz und Princeton mit ihrer Methode gelungen, ohne solche Stabilisatoren auszukommen und dennoch stabile Nanoteilchen herzustellen, bei denen die Oberflächenstruktur also erhalten bleiben kann. Das gelingt, weil das beigemischte Wasser eine negative Ladung der Nanoteilchen bewirkt, sodass diese sich gegenseitig abstoßen und auf diese Weise in sich stabil bleiben.

Bislang experimentierten die Physiker mit verhältnismäßig einfachen Polymeren. Da sich diese allerdings ganz ähnlich verhalten, deutet sich an, dass dies für eine Vielzahl anderer Materialien und Oberflächen gleichermaßen gelten könnte. Dies würde es erlauben, unterschiedlichste kolloidale Teilchen herzustellen – und das im Unterschied zu bisherigen Methoden massenhaft, nicht nur vereinzelt. Die jetzt neu entwickelte Methode könnte damit zahlreiche neue Möglichkeiten für wissenschaftliche und industrielle Anwendungen eröffnen, etwa für optoelektronische Geräte, hochspezifische Katalysatoren oder biomedizinische Anwendungen.

Veröffentlichung:
A. Nikoubashman, V.E. Lee, C. Sosa, R.K. Prud'homme, R.D. Priestley and A.Z. Panagiotopoulos: Directed assembly of soft colloids through rapid solvent exchange, ACS Nano, (2016), 10, 1425-1433. DOI: 10.1021/acsnano.5b06890
http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06890


Weitere Informationen:
Dr. Arash Nikoubashman
Institut für Physik
Johannes Gutenberg-Universität Mainz
Staudingerweg 7-9
55128 Mainz
Tel. +49 6131 39-27254
Fax +49 6131 39-20496
E-Mail: anikouba@uni-mainz.de

Weitere Informationen:

http://www.komet331.physik.uni-mainz.de/nikoubashman.php

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Seltener Fund aus der Tiefsee
20.02.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

Von Bitcoins bis zur Genomchirurgie

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Markierung für Krebsstammzellen

20.02.2018 | Biowissenschaften Chemie

Da haben wir den Salat: Erste Ernte aus aufbereitetem Abwasser im Forschungsprojekt HypoWave

20.02.2018 | Agrar- Forstwissenschaften

Die Brücke, die sich dehnen kann

20.02.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics