Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Technik ermöglicht Massenfabrikation von Nanoteilchen

18.03.2016

Maßgeschneiderte Kolloide für zahlreiche wissenschaftliche und technische Anwendungen lassen sich schnell und kostengünstig produzieren.

Gemeinsam mit Experimentatoren von der Princeton University (USA) haben Mainzer Physiker um Dr. Arash Nikoubashman eine neuartige Technik zur Massenfabrikation von Nanoteilchen entwickelt und theoretisch analysiert.


Schematische Darstellung der Fabrikationstechnik mit experimenteller Aufnahme eines Janus Nanoteilchens bestehend aus Polystyren und Polyisopren (Durchmesser etwa 300nm)

Abb./Copyright: Arash Nikoubashman

Damit wird es möglich, schnell und kostengünstig polymerbasierte Kolloide – Nanoteilchen in einer Lösung – herzustellen. Solche maßgeschneiderten Kolloide werden für zahlreiche wissenschaftliche und technische Anwendungen benötigt.

Bisher war es jedoch nur mit großem Aufwand, hohen Kosten und in kleiner Zahl möglich, die für moderne Anwendungen sehr gefragten Nanoteilchen zu produzieren.

Experimente in Princeton zeigten, dass beim schnellen Mischen einer Polymerlösung mit Wasser weiche Nanopartikel entstehen, die ohne das Hinzufügen zusätzlicher Stoffe stabil bleiben – eine verblüffend einfache Lösung für das Problem, Nanoteilchen zu erzeugen. Als Polymerlösung wurde zunächst in Tetrahydrofuran (THF) gelöstes Polystyrol (Styropor) sowie Polyisopren (Naturkautschuk) verwendet.

Um die zugrunde liegende Physik zu verstehen und systematisch zu erforschen, wie sich diese Aggregation über verschiedene Parameter beeinflussen lässt, haben Physiker um Dr. Arash Nikoubashman in Mainz zahlreiche Simulationen durchgeführt. Das Wasser lässt die Polymerketten kollabieren und zu Nanopartikeln aggregieren.

Die Tatsache, dass sich die Teilchen spontan selbst anordnen, macht es möglich zu beeinflussen, wie sich die einzelnen Partikel zu komplexeren Strukturen zusammenfügen. Über die Geschwindigkeit des Mischens und die Konzentration der Polymerlösung lässt sich gut steuern, wie groß die entstehenden Partikel werden.

Nanoteilchen stecken etwa in Katalysatoren, Kosmetik, wasserabweisenden Strukturen und optoelektronischen Elementen, zudem spielen sie in der medizinischen Forschung eine große Rolle. Die Eigenschaften dieser Teilchen sind abhängig vom Material, aus denen sie gemacht sind, aber auch ganz entscheidend von ihrer Größe und Oberflächenbeschaffenheit.

Bei der bisherigen Produktion von Nanoteilchen mussten oft zusätzliche Stabilisatoren eingebracht werden, damit die entstandenen Nanoteilchen nicht direkt wieder zerfallen oder verklumpen (aggregieren). Solche Stabilisatoren lagern sich um das Nanoteilchen herum an und beeinflussen damit die Oberflächenbeschaffenheit des Teilchens, die wiederum manchmal genau von entscheidender Bedeutung für die jeweilige Anwendung ist.

Dies ist zum Beispiel der Fall bei so genannten Janus-Teilchen, die aus zwei Hälften mit gegensätzlichen Eigenschaften bestehen. Jetzt ist es den Wissenschaftlern aus Mainz und Princeton mit ihrer Methode gelungen, ohne solche Stabilisatoren auszukommen und dennoch stabile Nanoteilchen herzustellen, bei denen die Oberflächenstruktur also erhalten bleiben kann. Das gelingt, weil das beigemischte Wasser eine negative Ladung der Nanoteilchen bewirkt, sodass diese sich gegenseitig abstoßen und auf diese Weise in sich stabil bleiben.

Bislang experimentierten die Physiker mit verhältnismäßig einfachen Polymeren. Da sich diese allerdings ganz ähnlich verhalten, deutet sich an, dass dies für eine Vielzahl anderer Materialien und Oberflächen gleichermaßen gelten könnte. Dies würde es erlauben, unterschiedlichste kolloidale Teilchen herzustellen – und das im Unterschied zu bisherigen Methoden massenhaft, nicht nur vereinzelt. Die jetzt neu entwickelte Methode könnte damit zahlreiche neue Möglichkeiten für wissenschaftliche und industrielle Anwendungen eröffnen, etwa für optoelektronische Geräte, hochspezifische Katalysatoren oder biomedizinische Anwendungen.

Veröffentlichung:
A. Nikoubashman, V.E. Lee, C. Sosa, R.K. Prud'homme, R.D. Priestley and A.Z. Panagiotopoulos: Directed assembly of soft colloids through rapid solvent exchange, ACS Nano, (2016), 10, 1425-1433. DOI: 10.1021/acsnano.5b06890
http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06890


Weitere Informationen:
Dr. Arash Nikoubashman
Institut für Physik
Johannes Gutenberg-Universität Mainz
Staudingerweg 7-9
55128 Mainz
Tel. +49 6131 39-27254
Fax +49 6131 39-20496
E-Mail: anikouba@uni-mainz.de

Weitere Informationen:

http://www.komet331.physik.uni-mainz.de/nikoubashman.php

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics