Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuartige Membran für Klimaschutz und Medizintechnik

30.10.2013
Mainzer Polymerforscher entwickeln Membran zur Gastrennung und
-anreicherung. Zukünftiger Einsatz in Herz-Lungen-Maschinen und für leistungsfähigere Gasfilter.

Ein Forscherteam des Max-Planck-Instituts für Polymerforschung (MPI-P) um Direktor Hans-Jürgen Butt und Projektleiterin Doris Vollmer hat eine neue Art Membran entwickelt, mit der Gase wie Kohlenstoffdioxid (CO2) nach Wunsch in Flüssigkeiten und Gasen angereichert oder aus ihnen herausgelöst werden können.

Der wissenschaftliche Durchbruch wurde im Fachjournal "Nature Communications" bekanntgegeben. Die Fähigkeiten der Membran beruhen auf einer stark flüssigkeitsabweisenden (superamphiphoben) Beschichtung, die nicht nur den Gasaustausch verbessert sondern gleichzeitig ihre Poren vor Verstopfung schützt.

In Herz-Lungen-Maschinen könnte die lebensrettende Sauerstoffanreicherung von Blut weitaus zuverlässiger als bisher geschehen. Hans-Jürgen Butt sieht Potenzial für weitere Anwendungen im medizinischen und industriellen Bereich: „Der Gasaustausch ist sicher das größte Anwendungsgebiet. Aber auch im Bereich des Klimaschutzes sowie im biomedizinischen Bereich könnte die Membran eingesetzt werden“, erklärt der Max-Planck-Direktor.

Die Grundlagen der superamphiphoben Beschichtung resultieren aus vorhergehenden Forschungen der Oberflächenphysiker. Sie verwendeten dazu Kerzenruß. Dessen aus mikroskopischen Kugeln zusammengesetzte Struktur wirkt noch weitaus effektiver selbstreinigend als ein Lotusblatt. Jedoch ist Ruß nicht stabil, lässt sich aber als Templat für beständigere Beschichtungen verwenden. Die Mainzer Forscher bedampften den Kerzenruß mit Siliciumoxid und brannten den Ruß anschließend aus. Die verbleibende gerade 20 Nanometer dicke Schicht wurde daraufhin mit einer fluorhaltigen Silicium-Verbindung überzogen, um die wasser- und ölabweisende Wirkung zu erzielen.

Experimente zeigen, dass das kreative Design der Nanostruktur aus den Mainzer Labors nicht nur einer Benetzung mit Wasser und Ölen sondern auch durch Blut, Seifenlösungen und Aminen widersteht und sich dazu mit wenig Aufwand herstellen lässt. Diese bis vor einiger Zeit kaum vorstellbare Eigenschaft, tauften die Mainzer „superamphiphob“ als logisch hergeleitetes Gegenteil zum Begriff „amphiphil“, der Stoffe beschreibt, die sowohl wasser- als auch ölliebend sind.

Für die Membran wird ein feinmaschiges Netz aus Edelstahl als Substrat benutzt, auf das die superamphiphobe Schicht aufgebracht wird. Beim Gasaustausch ist die nanostrukturierte Seite der Membran in Kontakt mit der Flüssigkeit, während das Gas gleichzeitig auf der anderen Seite vorbeiströmt. Die Gasmoleküle können ungehindert durch die Zwischenräume des hochporösen Netzwerks driften. Auch bei geringen Fließgeschwindigkeiten wird so ein hoher Gasaustausch erreicht und was wiederum die Gerinnung und damit das Thrombose-Risiko verringert, wenn Blut mit Sauerstoff gespeist werden soll. Der besondere Vorteil: die Membranporen verkleben dabei nicht. In Tests hinterließ Blut im Gegensatz zu Teflon auch nach mehrstündigem Kontakt mit der Beschichtung keine Spuren auf der Membran – eine elementare Voraussetzung für den Einsatz in Herz-Lungen-Maschinen.

Die erzielten Gasaustauschraten bei Versuchen zur Anreicherung von Gasen (z.B. CO2) lassen vielversprechende industrielle Anwendungen erwarten. Mit der Membran können sowohl Anreicherungs- als auch Filtrationsprozesse durchgeführt werden. Zum Beispiel würde Feinstaub aus der Luft filtriert und in Kalkmilch oder Wasser fixiert. CO2 könnte durch die Membran in Aminlösungen, dem gängigen CO2-Speichermedium, überführt werden. Ein wesentlicher Schritt auf dem Weg zur Endlagerung von CO2.

Universell flüssigkeitsabweisende Oberflächen bieten ein spannendes Forschungsfeld. Zum einen ermöglichen sie grundlegende Funktionsprinzipien der Benetzung von Oberflächen, der Wechselwirkung von Flüssigkeiten mit Festkörpern und dem Strömungsverhalten von Flüssigkeiten besser zu verstehen. Zum anderen ist das Phänomen Superamphiphobie für einen Einsatz in Industrie und Medizin oder für den Umweltschutz interessant, aber noch weitgehend unerforscht.

Max-Planck-Institut für Polymerforschung

Das 1984 gegründete Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Durch die Fokussierung auf so genannte weiche Materie und makromolekulare Materialien ist das Max-Planck-Institut für Polymerforschung mit seiner Forschungsausrichtung weltweit einzigartig. Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland arbeiten im Rahmen der Grundlagenforschung an der Herstellung und Charakterisierung von Polymeren und der Untersuchung ihrer physikalischen und chemischen Eigenschaften. Anfang 2013 sind insgesamt 551 Personen am MPI-P beschäftigt: Die Belegschaft setzte sich aus 112 Wissenschaftlern, 173 Doktoranden und Diplomanden, 71 Gastwissenschaftlern und 195 technischen und Verwaltungsangestellten sowie Hilfskräften zusammen.

Weitere Informationen:

http://www.nature.com/ncomms/2013/130925/ncomms3512/full/ncomms3512.html
- die zugehörige Publikation bei Nature Communications
http://www.mpip-mainz.mpg.de/1958108/PM13-13
- weitere Informationen und Bilder auf der MPIP-Homepage

Stephan Imhof | Max-Planck-Institut
Weitere Informationen:
http://www.mpip-mainz.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie

Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden

19.01.2018 | Energie und Elektrotechnik