Neu in Würzburg: Carmen Villmann erforscht Ionenkanäle

Bei der Erregungsleitung, im Stoffwechsel und bei vielen anderen Prozessen übernehmen die Proteine lebensnotwendige Aufgaben. Carmen Villmann erforscht diese Kanäle. Seit Januar ist sie neue Professorin am Institut für Klinische Neurobiologie der Universität Würzburg.

Manche Kinder fallen schon gleich nach der Geburt durch eine extreme Schreckhaftigkeit auf. Ein Händeklatschen in ihrer Umgebung, eine zufallende Tür oder ein Lichtblitz genügen, und die Neugeborenen zeigen eine extreme Schreckreaktion. Ihre Hände verkrampfen sich, der Kopf ist stark nach hinten überstreckt, Arme und Beine zittern. „Startle disease“ oder „Stiff Baby Syndrom“ heißt ihre Krankheit. Sie zählt zu den Übererregbarkeitssyndromen. Auslöser ist ein fehlerhaft arbeitender Ionenkanal.

Defekte Ionenkanäle sind das Spezialgebiet von Carmen Villmann. Die Professorin ist seit diesem Jahr am Institut für Klinische Neurobiologie der Universität Würzburg tätig. Dort will sie unter anderem den motorischen Forschungsschwerpunkt verstärken.

Ionenkanäle bei der Arbeit

„Alle unsere Bewegungen, sei es Gehen, Sprechen, Kauen oder die präzise Bewegung unserer Hände vollziehen sich automatisch und erscheinen für uns selbstverständlich. Tatsächlich aber unterliegt Muskelarbeit vielen Regulationsmechanismen“, sagt Carmen Villmann. Einer dieser Mechanismen basiert auf der Funktion spezieller Ionenkanäle, der sogenannten Glycinrezeptoren. Diese Rezeptoren finden sich beim Menschen im zentralen Nervensystem, genauer gesagt im Rückenmark und im Hirnstamm, und bilden dort wichtige Schaltstellen für die Motorik.

Funktionieren sie nicht richtig, kann das beispielsweise zum Stiff Baby Syndrom führen. „Mutierte Glycinrezeptoren sind eine der Ursache für diese seltene neurologische Bewegungsstörung“, sagt Carmen Villmann. In ihrem Labor charakterisiert die Wissenschaftlerin die dafür verantwortlichen Mutationen, die im Erbgut von Betroffenen identifiziert wurden. Während dominante Mutationen meist zu Kanälen führen, die ihre Arbeit verweigern, nämlich Ionen zu leiten, führen rezessive Mutationen zu einem fehlerhaften Zusammenbau der Ionenkanäle.

Ionenkanäle sind in die Membran von Zellen eingebaute Tunnelproteine, die in der Lage sind, bestimmte elektrisch geladene Teilchen, Chlorid-Ionen im Falle der Glycinrezeptoren, in die Zelle zu transportieren. Aktiviert werden Glycinrezeptoren durch den Neurotransmitter Glycin. Ihre Aufgabe ist es, in Reaktion auf einen Reiz die Erregung bestimmter motorischer Nervenzellen zu dämpfen und damit am Ende der Signalkaskade eine gezielte Bewegung zu erlauben. Im Fall des Stiff Baby Syndroms funktioniert dieses Dämpfen nicht; die Muskeln werden überregt und verkrampfen letztendlich.

Der Aufbau von Tunnelproteinen

Neben den Mutationen und den damit einhergehenden Veränderungen der Tunnelproteine interessiert sich Carmen Villmann auch für den Aufbau der Proteine. „Die sogenannte Mosaikstruktur besagt, dass sich Tunnelproteine aus Modulen anderer Proteine mit möglicherweise anderer Funktion zusammengesetzt haben. Wenn dem so ist, sollte es möglich sein, Proteine aus sich unabhängig voneinander faltenden Modulen zu bauen“, sagt Carmen Villmann.

Diese Vermutung konnte durch Experimente an einem verkürzten funktionslosen Ionenkanal im Tierversuch inzwischen bewiesen werden. Wenn die Wissenschaftler die Zelle dazu brachten, das fehlende Teilstück selbst herzustellen, war der Ionenkanal wieder in der Lage, seine Aufgaben zu erfüllen. Die Identifikation von derartigen Teilstücken, sogenannten Minimaldomänen, die in der Lage sind sich selbst zu falten und ein funktionsloses Protein zu reparieren, sind von besonderem Interesse der Arbeitsgruppe von Carmen Villmann.

„Spontane Mutationen, die zu verkürzten Proteinen führen, sind in vielen Krankheitsbildern bekannt“, sagt Villmann. Wenn es gelingt, den Fehler mit Hilfe der Minimaldomänen zu beheben, biete sich dies als neues gentherapeutisches Konzepte für Ionenkanalerkrankungen an. Die Forschung am Glycinrezeptor käme übrigens nicht nur den am Stiff Baby Syndrom Erkrankten zugute. Dieser Rezeptor steht als Modellsystem auch für andere Erkrankungen wie beispielsweise bestimmte Formen der Epilepsie.

Zur Person

Carmen Villmann (Jahrgang 1968) ist in Neu-Kaliss geboren und in Mecklenburg/Vorpommern aufgewachsen. Von 1987 bis 1994 studierte sie Biologie an der Humboldt-Universität Berlin, der Northeastern University Boston und der Universität Hannover. 1998 wurde sie am Max-Planck-Institut für Experimentelle Medizin Göttingen promoviert; das Thema ihrer Arbeit lautete: „Untersuchungen zu Struktur-Funktionsbeziehungen an Porendomänen ionotroper Glutamatrezeptoren“.

1998 wechselte Villmann an das Institut für Biochemie der Universität Erlangen; 2009 habilitierte sie sich dort für das Fach Biochemie mit einer Arbeit über „Pathologische Kanalerkrankungen und Bedeutung von Rezeptordomänen für die Ionenkanalfunktion auf dem Weg zu molekularen Therapieansätzen“. 2010/11 hatte sie die wissenschaftliche Leitung des Lehrstuhls Biochemie und Molekulare Medizin an der Universität Erlangen inne.

Kontakt

Prof. Dr. Carmen Villmann, T: (0931) 201-44035,
E-Mail: Villmann_C@klinik.uni-wuerzburg.de

Media Contact

Gunnar Bartsch idw

Weitere Informationen:

http://www.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer