Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neu in Würzburg: Carmen Villmann erforscht Ionenkanäle

20.03.2012
Wann immer elektrisch geladene Teilchen durch Zellmembranen hindurch transportiert werden müssen, sind Ionenkanäle im Spiel.

Bei der Erregungsleitung, im Stoffwechsel und bei vielen anderen Prozessen übernehmen die Proteine lebensnotwendige Aufgaben. Carmen Villmann erforscht diese Kanäle. Seit Januar ist sie neue Professorin am Institut für Klinische Neurobiologie der Universität Würzburg.

Manche Kinder fallen schon gleich nach der Geburt durch eine extreme Schreckhaftigkeit auf. Ein Händeklatschen in ihrer Umgebung, eine zufallende Tür oder ein Lichtblitz genügen, und die Neugeborenen zeigen eine extreme Schreckreaktion. Ihre Hände verkrampfen sich, der Kopf ist stark nach hinten überstreckt, Arme und Beine zittern. „Startle disease“ oder „Stiff Baby Syndrom“ heißt ihre Krankheit. Sie zählt zu den Übererregbarkeitssyndromen. Auslöser ist ein fehlerhaft arbeitender Ionenkanal.

Defekte Ionenkanäle sind das Spezialgebiet von Carmen Villmann. Die Professorin ist seit diesem Jahr am Institut für Klinische Neurobiologie der Universität Würzburg tätig. Dort will sie unter anderem den motorischen Forschungsschwerpunkt verstärken.

Ionenkanäle bei der Arbeit

„Alle unsere Bewegungen, sei es Gehen, Sprechen, Kauen oder die präzise Bewegung unserer Hände vollziehen sich automatisch und erscheinen für uns selbstverständlich. Tatsächlich aber unterliegt Muskelarbeit vielen Regulationsmechanismen“, sagt Carmen Villmann. Einer dieser Mechanismen basiert auf der Funktion spezieller Ionenkanäle, der sogenannten Glycinrezeptoren. Diese Rezeptoren finden sich beim Menschen im zentralen Nervensystem, genauer gesagt im Rückenmark und im Hirnstamm, und bilden dort wichtige Schaltstellen für die Motorik.

Funktionieren sie nicht richtig, kann das beispielsweise zum Stiff Baby Syndrom führen. „Mutierte Glycinrezeptoren sind eine der Ursache für diese seltene neurologische Bewegungsstörung“, sagt Carmen Villmann. In ihrem Labor charakterisiert die Wissenschaftlerin die dafür verantwortlichen Mutationen, die im Erbgut von Betroffenen identifiziert wurden. Während dominante Mutationen meist zu Kanälen führen, die ihre Arbeit verweigern, nämlich Ionen zu leiten, führen rezessive Mutationen zu einem fehlerhaften Zusammenbau der Ionenkanäle.

Ionenkanäle sind in die Membran von Zellen eingebaute Tunnelproteine, die in der Lage sind, bestimmte elektrisch geladene Teilchen, Chlorid-Ionen im Falle der Glycinrezeptoren, in die Zelle zu transportieren. Aktiviert werden Glycinrezeptoren durch den Neurotransmitter Glycin. Ihre Aufgabe ist es, in Reaktion auf einen Reiz die Erregung bestimmter motorischer Nervenzellen zu dämpfen und damit am Ende der Signalkaskade eine gezielte Bewegung zu erlauben. Im Fall des Stiff Baby Syndroms funktioniert dieses Dämpfen nicht; die Muskeln werden überregt und verkrampfen letztendlich.

Der Aufbau von Tunnelproteinen

Neben den Mutationen und den damit einhergehenden Veränderungen der Tunnelproteine interessiert sich Carmen Villmann auch für den Aufbau der Proteine. „Die sogenannte Mosaikstruktur besagt, dass sich Tunnelproteine aus Modulen anderer Proteine mit möglicherweise anderer Funktion zusammengesetzt haben. Wenn dem so ist, sollte es möglich sein, Proteine aus sich unabhängig voneinander faltenden Modulen zu bauen“, sagt Carmen Villmann.

Diese Vermutung konnte durch Experimente an einem verkürzten funktionslosen Ionenkanal im Tierversuch inzwischen bewiesen werden. Wenn die Wissenschaftler die Zelle dazu brachten, das fehlende Teilstück selbst herzustellen, war der Ionenkanal wieder in der Lage, seine Aufgaben zu erfüllen. Die Identifikation von derartigen Teilstücken, sogenannten Minimaldomänen, die in der Lage sind sich selbst zu falten und ein funktionsloses Protein zu reparieren, sind von besonderem Interesse der Arbeitsgruppe von Carmen Villmann.

„Spontane Mutationen, die zu verkürzten Proteinen führen, sind in vielen Krankheitsbildern bekannt“, sagt Villmann. Wenn es gelingt, den Fehler mit Hilfe der Minimaldomänen zu beheben, biete sich dies als neues gentherapeutisches Konzepte für Ionenkanalerkrankungen an. Die Forschung am Glycinrezeptor käme übrigens nicht nur den am Stiff Baby Syndrom Erkrankten zugute. Dieser Rezeptor steht als Modellsystem auch für andere Erkrankungen wie beispielsweise bestimmte Formen der Epilepsie.

Zur Person

Carmen Villmann (Jahrgang 1968) ist in Neu-Kaliss geboren und in Mecklenburg/Vorpommern aufgewachsen. Von 1987 bis 1994 studierte sie Biologie an der Humboldt-Universität Berlin, der Northeastern University Boston und der Universität Hannover. 1998 wurde sie am Max-Planck-Institut für Experimentelle Medizin Göttingen promoviert; das Thema ihrer Arbeit lautete: „Untersuchungen zu Struktur-Funktionsbeziehungen an Porendomänen ionotroper Glutamatrezeptoren“.

1998 wechselte Villmann an das Institut für Biochemie der Universität Erlangen; 2009 habilitierte sie sich dort für das Fach Biochemie mit einer Arbeit über „Pathologische Kanalerkrankungen und Bedeutung von Rezeptordomänen für die Ionenkanalfunktion auf dem Weg zu molekularen Therapieansätzen“. 2010/11 hatte sie die wissenschaftliche Leitung des Lehrstuhls Biochemie und Molekulare Medizin an der Universität Erlangen inne.

Kontakt

Prof. Dr. Carmen Villmann, T: (0931) 201-44035,
E-Mail: Villmann_C@klinik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie