Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neu in Würzburg: Carmen Villmann erforscht Ionenkanäle

20.03.2012
Wann immer elektrisch geladene Teilchen durch Zellmembranen hindurch transportiert werden müssen, sind Ionenkanäle im Spiel.

Bei der Erregungsleitung, im Stoffwechsel und bei vielen anderen Prozessen übernehmen die Proteine lebensnotwendige Aufgaben. Carmen Villmann erforscht diese Kanäle. Seit Januar ist sie neue Professorin am Institut für Klinische Neurobiologie der Universität Würzburg.

Manche Kinder fallen schon gleich nach der Geburt durch eine extreme Schreckhaftigkeit auf. Ein Händeklatschen in ihrer Umgebung, eine zufallende Tür oder ein Lichtblitz genügen, und die Neugeborenen zeigen eine extreme Schreckreaktion. Ihre Hände verkrampfen sich, der Kopf ist stark nach hinten überstreckt, Arme und Beine zittern. „Startle disease“ oder „Stiff Baby Syndrom“ heißt ihre Krankheit. Sie zählt zu den Übererregbarkeitssyndromen. Auslöser ist ein fehlerhaft arbeitender Ionenkanal.

Defekte Ionenkanäle sind das Spezialgebiet von Carmen Villmann. Die Professorin ist seit diesem Jahr am Institut für Klinische Neurobiologie der Universität Würzburg tätig. Dort will sie unter anderem den motorischen Forschungsschwerpunkt verstärken.

Ionenkanäle bei der Arbeit

„Alle unsere Bewegungen, sei es Gehen, Sprechen, Kauen oder die präzise Bewegung unserer Hände vollziehen sich automatisch und erscheinen für uns selbstverständlich. Tatsächlich aber unterliegt Muskelarbeit vielen Regulationsmechanismen“, sagt Carmen Villmann. Einer dieser Mechanismen basiert auf der Funktion spezieller Ionenkanäle, der sogenannten Glycinrezeptoren. Diese Rezeptoren finden sich beim Menschen im zentralen Nervensystem, genauer gesagt im Rückenmark und im Hirnstamm, und bilden dort wichtige Schaltstellen für die Motorik.

Funktionieren sie nicht richtig, kann das beispielsweise zum Stiff Baby Syndrom führen. „Mutierte Glycinrezeptoren sind eine der Ursache für diese seltene neurologische Bewegungsstörung“, sagt Carmen Villmann. In ihrem Labor charakterisiert die Wissenschaftlerin die dafür verantwortlichen Mutationen, die im Erbgut von Betroffenen identifiziert wurden. Während dominante Mutationen meist zu Kanälen führen, die ihre Arbeit verweigern, nämlich Ionen zu leiten, führen rezessive Mutationen zu einem fehlerhaften Zusammenbau der Ionenkanäle.

Ionenkanäle sind in die Membran von Zellen eingebaute Tunnelproteine, die in der Lage sind, bestimmte elektrisch geladene Teilchen, Chlorid-Ionen im Falle der Glycinrezeptoren, in die Zelle zu transportieren. Aktiviert werden Glycinrezeptoren durch den Neurotransmitter Glycin. Ihre Aufgabe ist es, in Reaktion auf einen Reiz die Erregung bestimmter motorischer Nervenzellen zu dämpfen und damit am Ende der Signalkaskade eine gezielte Bewegung zu erlauben. Im Fall des Stiff Baby Syndroms funktioniert dieses Dämpfen nicht; die Muskeln werden überregt und verkrampfen letztendlich.

Der Aufbau von Tunnelproteinen

Neben den Mutationen und den damit einhergehenden Veränderungen der Tunnelproteine interessiert sich Carmen Villmann auch für den Aufbau der Proteine. „Die sogenannte Mosaikstruktur besagt, dass sich Tunnelproteine aus Modulen anderer Proteine mit möglicherweise anderer Funktion zusammengesetzt haben. Wenn dem so ist, sollte es möglich sein, Proteine aus sich unabhängig voneinander faltenden Modulen zu bauen“, sagt Carmen Villmann.

Diese Vermutung konnte durch Experimente an einem verkürzten funktionslosen Ionenkanal im Tierversuch inzwischen bewiesen werden. Wenn die Wissenschaftler die Zelle dazu brachten, das fehlende Teilstück selbst herzustellen, war der Ionenkanal wieder in der Lage, seine Aufgaben zu erfüllen. Die Identifikation von derartigen Teilstücken, sogenannten Minimaldomänen, die in der Lage sind sich selbst zu falten und ein funktionsloses Protein zu reparieren, sind von besonderem Interesse der Arbeitsgruppe von Carmen Villmann.

„Spontane Mutationen, die zu verkürzten Proteinen führen, sind in vielen Krankheitsbildern bekannt“, sagt Villmann. Wenn es gelingt, den Fehler mit Hilfe der Minimaldomänen zu beheben, biete sich dies als neues gentherapeutisches Konzepte für Ionenkanalerkrankungen an. Die Forschung am Glycinrezeptor käme übrigens nicht nur den am Stiff Baby Syndrom Erkrankten zugute. Dieser Rezeptor steht als Modellsystem auch für andere Erkrankungen wie beispielsweise bestimmte Formen der Epilepsie.

Zur Person

Carmen Villmann (Jahrgang 1968) ist in Neu-Kaliss geboren und in Mecklenburg/Vorpommern aufgewachsen. Von 1987 bis 1994 studierte sie Biologie an der Humboldt-Universität Berlin, der Northeastern University Boston und der Universität Hannover. 1998 wurde sie am Max-Planck-Institut für Experimentelle Medizin Göttingen promoviert; das Thema ihrer Arbeit lautete: „Untersuchungen zu Struktur-Funktionsbeziehungen an Porendomänen ionotroper Glutamatrezeptoren“.

1998 wechselte Villmann an das Institut für Biochemie der Universität Erlangen; 2009 habilitierte sie sich dort für das Fach Biochemie mit einer Arbeit über „Pathologische Kanalerkrankungen und Bedeutung von Rezeptordomänen für die Ionenkanalfunktion auf dem Weg zu molekularen Therapieansätzen“. 2010/11 hatte sie die wissenschaftliche Leitung des Lehrstuhls Biochemie und Molekulare Medizin an der Universität Erlangen inne.

Kontakt

Prof. Dr. Carmen Villmann, T: (0931) 201-44035,
E-Mail: Villmann_C@klinik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE