Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neu entdecktes Gen schützt vor Hirnschädigung

21.04.2011
Perspektiven für die Therapie bei Schlaganfall und neurodegenerativen Erkrankungen

Ein Gen, das vor den Folgen eines Schlaganfalles schützt, haben Wissenschaftler der Universität Heidelberg unter Leitung von Prof. Dr. Hilmar Bading entdeckt. Die Forscher am Interdisziplinären Zentrum für Neurowissenschaften (IZN) konnten nachweisen, dass die vermehrte Herstellung dieses Genproduktes die Nervenzellen im Gehirn widerstandsfähiger macht. Sauerstoffmangel und zu hohe Konzentrationen von Neurotransmittern führen bei einem Schlaganfall zu ausgedehntem Zelluntergang im Gehirn. Gehirnzellen, die durch Gentransfer mit dem neu entdeckten Gen ausgestattet wurden, sind unter diesen toxischen Bedingungen überlebensfähiger. Veröffentlicht wurden die Ergebnisse jetzt in der amerikanischen Fachzeitschrift „The Journal of Neuroscience“.

Zu den besonderen Eigenschaften des neu entdeckten Gens gehört, dass es Teil eines körpereigenen Schutzprogramms ist: Es wird immer dann von Nervenzellen angeschaltet, wenn diese aktiv sind – ein aktives Gehirn baut sich also sein eigenes Schutzschild auf. „Erste Hinweise auf eine mögliche Schutzfunktion dieses Gens erhielten wir durch Experimente an sogenannten Nervenzellkulturen, mit denen man die Bedingungen, denen das Gehirn bei einem Schlaganfall ausgesetzt ist, simulieren kann. Wir konnten daraufhin in einem Mausmodell zeigen, dass die Hirnschädigung, die durch mangelhafte Blutversorgung bei einem Schlaganfall hervorgerufen wird, durch das Schutzgen vermindert werden kann“, erläutert Prof. Bading.

Die Heidelberger Forscher gehen davon aus, dass das Gen nicht nur vor den Folgen eines Schlaganfalles schützt, sondern die Zellen generell widerstandsfähiger macht. So könnte es auch gegen das Absterben von Nervenzellen als Folge von Alterungsprozessen oder zum Beispiel auch in der Therapie neurodegenerativer Erkrankungen wie Morbus Alzheimer eingesetzt werden. Der genaue Mechanismus, über den das Gen die Zelle vor dem Sterben schützt, ist den Wissenschaftlern zwar noch nicht bekannt, die Ergebnisse deuten jedoch darauf hin, dass das Schutzgen bestimmte „Selbstmordgene“ blockieren kann.

Die Tatsache, dass der Körper dieses Gen eigenständig anschalten kann und damit in der Lage ist, sich diesen Schutz selbst aufzubauen, bedeutet, so Prof. Bading, „dass man nicht nur ins Fitnessstudio gehen sollte, um seinen Körper fit zu halten, sondern sich auch geistig betätigt – denn ein aktives Gehirn ist besser geschützt“. Die Erkenntnisse der Heidelberger Wissenschaftler bieten einerseits neue Perspektiven für die Therapie von Schlaganfällen und neurodegenerativen Erkrankungen. Sie unterstreichen aber auch, wie wichtig geistige Aktivität für die Gesundheit ist.

Originalveröffentlichung: Zhang, S.‐J., Buchthal, B., Lau, D., Hayer, S., Dick, O., Schwaninger, M., Veltkamp, R., Zou, M., Weiss, U., Bading, H. (2011): A Signaling Cascade of Nuclear Calcium‐CREB‐ATF3 Activated by Synaptic NMDA Receptors Defines a Gene Repression Module That Protects against Extrasynaptic NMDA Receptor‐Induced Neuronal Cell Death and Ischemic Brain Damage. J. Neurosci. 31: 4978‐4990.

Kontakt:
Prof. Dr. Hilmar Bading
Interdisziplinäres Zentrum für Neurowissenschaften (IZN)
Telefon (06221) 54‐8218
Hilmar.Bading@uni‐hd.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Gen FTO Hirnschädigung IZN Nervenzelle Neurowissenschaft Schlaganfall Schutzgen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics